Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Schwerkraft auf der Spur - die Gravitations-Resonanzmethode

18.04.2011
Mit den Tricks der Quantenphysik kann nun auch die Gravitation auf kurzen Abständen untersucht werden: An der Technischen Universität (TU) Wien wurde dazu ein neues Messverfahren entwickelt, mit dem sich Theorien über die Schwerkraft nun präzise testen lassen.

Bei den genauesten Messverfahren, die wir kennen, ist Quantenphysik im Spiel: Hochpräzise Atomuhren oder hochauflösende Magnetresonanzverfahren in der Medizin beruhen auf der Vermessung von Quantensprüngen: Regt man ein Teilchen in genau der richtigen Frequenz an, wechselt es seinen Quantenzustand – man spricht von „Resonanzspektroskopie“.


Neutronen zwischen zwei Platten können im Schwerefeld der Erde unterschiedliche Quantenzustände einnehmen. Eine vibrierende Platte (unten) hebt sie von einem Zustand in den anderen - das erlaubt eine hochpräzise Energiemessung. Florian Aigner, TU Wien

Alle bisherigen Verfahren dieser Art verwenden dafür elektromagnetische Strahlung oder Felder. Wissenschaftler an der TU Wien haben nun eine Resonanzmethode entwickelt, die zum ersten Mal ohne Elektromagnetismus auskommt und auf die Schwerkraft angewandt wird. Durch die Gravitation ergeben sich für die Neutronen verschiedene mögliche Quantenzustände. Neu ist, dass Übergänge zwischen diesen Zuständen angeregt und präzise vermessen werden können. Die Ergebnisse dieser Experimente wurden nun im Fachjournal „Nature Physics“ publiziert.

Schwerkraft und Quantenphysik haben auf den ersten Blick wenig miteinander zu tun: Die Gravitation spüren wir, wenn große, massereiche Objekte wie Sterne oder Planeten im Spiel sind. Für Quantenteilchen hingegen spielt die Schwerkraft meist keine große Rolle. Mit der neuen Methode werden diese beiden Bereiche nun verknüpft – die Theorie der Gravitation lässt sich nun auf der Skala kleinster Entfernungen untersuchen. Damit erhofft man sich auch neue Erkenntnisse über Stringtheorie und die Natur dunkler Materie. Bisher beschränkte sich die Erforschung der Schwerkraft auf makroskopische Entfernungen – oder gar auf astronomische Abstände.

Extrem langsame Neutronen

Die Auswirkungen der Gravitation auf sehr kurzen Längenskalen zu messen ist schwer: “Die Aussagekraft von Atomen bei solchen Experimenten ist begrenzt, weil ihr Verhalten von kurzreichweitigen elektrischen Kräften stark dominiert wird - etwa von Van der Waals- oder Casimirkräften“, erklärt Prof. Hartmut Abele von der TU Wien. „Doch mit ultrakalten Neutronen, die ladungslos und extrem wenig polarisierbar sind, können wir auf kurzen Abständen sehr präzise messen.“ Neben Prof. Abele und seinen Assistenten Tobias Jenke und Dr. Hartmut Lemmel war auch Dr. Peter Geltenbort vom Institut Laue-Langevin in Grenoble an dieser Forschungsarbeit beteiligt.

Quantensprünge zwischen Gravitations-Zuständen

Ein Stein lässt sich in eine beliebige Höhe anheben – und je höher wir ihn heben, umso mehr Energie müssen wir aufwenden. Bei Quantenteilchen, wie den Neutronen, die zwischen zwei ebenen Platten hindurchfliegen, ist das anders: Sie können nur ganz bestimmte Portionen von Gravitations-Energie aufnehmen. An der Neutronenquelle des Instituts Laue-Langevin in Grenoble gelang es den Wiener Physikern, den quantenphysikalischen Energie-Zustand der Neutronen zwischen zwei ebenen Platten genau festzulegen. Eine der Platten ließ man dann mit einer präzise kontrollierten Frequenz vibrieren. Entspricht diese Frequenz genau der Energiedifferenz zwischen zwei Quantenzuständen, wird das Neutron dazu angeregt, in einen höheren Energiezustand zu wechseln. Wenn man misst, bei welcher Frequenz es zu diesem Übergang kommt, weiß man auch, welcher Energie-Unterschied zwischen den beiden Quantenzuständen besteht.

Träge Masse und schwere Masse

Massive Objekte haben zwei wichtige Eigenschaften: Sie sind träge (sie lassen sich also nur mit großem Kraftaufwand beschleunigen) und sie sind schwer (auf sie wirkt eine starke Gravitationskraft, nämlich die Anziehungskraft der Erde). Schon im 16. Jahrhundert erkannte man, dass Trägheit und Schwere zusammengehören und dass deshalb alle Objekte unabhängig von ihrer Masse gleich schnell zu Boden fallen. Ob das nur eine gute Näherung ist, oder ob das tatsächlich auch auf winzigen Skalen in der Quantenwelt stimmt, soll sich nun mit den neuen Experimenten endlich untersuchen lassen.

Schon seit Jahrzehnten wird angestrengt versucht, die Gravitation mit der Quantentheorie zu einer gemeinsamen Theorie aller Kräfte zu vereinen. So entstanden etwa verschiedene Stringtheorien, von denen die Existenz von zusätzlichen Raumdimensionen vorhergesagt wird, die uns bisher noch verborgen geblieben sind. „Mit unserer Neutronen-Methode werden wir jetzt daran gehen, solche Theorien direkt im Labor zu testen“, kündigt Prof. Hartmut Abele an. Selbst für die Kosmologie können diese Experimente eine wichtige Rolle spielen: Auch Theorien über die geheimnisvolle „dunkle Materie“, die Bewegungen der Galaxien beeinflussen soll, können nun auf winziger Skala durch die hochpräzisen Neutronen-Messungen untersucht werden. „Unsere Methode, die für die ganz kleinen Längenskalen gemacht ist, könnte möglicherweise - viel Glück vorausgesetzt - Aussagen über die Entwicklung des Universums an sich erlauben. Auf jeden Fall erwarten uns spannende Neuigkeiten der Gravitationsforschung“, ist Prof. Abele zuversichtlich.

Rückfragehinweise:

Prof. Hartmut Abele
Atominstitut
Technische Universität Wien
Stadionalle 2, 1020 Wien
T: +43-1-58801-141447
hartmut.abele@tuwien.ac.at
Dipl.-Phys. Tobias Jenke
Atominstitut
Technische Universität Wien
Stadionalle 2, 1020 Wien
T: +43-1-58801-141465
tobias.jenke@tuwien.ac.at
Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at
Quantum Physics & Quantum Technologies ist – neben Computational Science &
Engineering, Materials & Matter, Information & Communication Technology sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Erforscht werden mögliche Anwendungen von Quantenphänomenen. Diese reichen von fundamentalen Wechselwirkungen der Elementarteilchen über Strahlungsquellen für ultrakurze Photonenpulse bis hin zur Steuerung der Zustände einzelner Atome und damit zu Bauelementen für den Quantencomputer.

Dr. Florian Aigner | idw
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE