Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radar schützt vor Weltraummüll

01.07.2015

Die Bedrohung im All durch Weltraummüll ist groß. Aktive Satelliten und Raumfahrzeuge können beschädigt oder zerstört werden. Ein neues, nationales Weltraumüberwachungssystem soll ab 2018 vor Gefahren im Orbit schützen. Fraunhofer-Forscher entwickeln das Radar im Auftrag des DLR Raumfahrtmanagement.

Die »Verkehrssituation« im All ist angespannt: Neben unzähligen Satelliten umkreisen Weltraumtrümmer wie beispielsweise ausgebrannte Raketenstufen und Bruchstücke von explodierten Raumfahrtobjekten die Erde. Diese verwandeln den Orbit zunehmend in einen Schrottplatz.


Sowohl die Sende- als auch die Empfangsantenne lassen sich vollständig einfahren.

© Fraunhofer FHR

Wissenschaftler schätzen, dass inzwischen etwa 20.000 Objekte mit einer Größe von mehr als zehn Zentimetern und einem Tempo von durchschnittlich 25.000 Kilometern pro Stunde um die Erde rasen. Hinzu kommen 700.000 Objekte, die größer als ein Zentimeter sind. Durch ihre enorme Geschwindigkeit können diese Trümmerteilchen aktive Satelliten beschädigen oder zerstören.

Besonders fatal: Weltraummüll vermehrt sich wie durch einen Schneeballeffekt selber. Stoßen zwei Partikel aufeinander, werden neue, kleinere Teilchen erzeugt. Ohne Gegenmaßnahmen nimmt der Schrott rapide zu und könnte Raumfahrt unmöglich machen.

Der Handlungsbedarf ist groß. Das Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt (DLR) konzipiert im Auftrag der Bundesregierung das deutsche Raumfahrtprogramm. Es hat das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR in Wachtberg beauftragt, ein Radar zu entwickeln und zu bauen, das Objekte im erdnahen Weltraum überwacht und verfolgt.

Denn dort ist die Kollisionsgefahr am größten – vor allem in einer Höhe von 800 Kilometern. Das Bundesministerium für Wirtschaft und Energie (BMWi) fördert das Projekt GESTRA, kurz für German Experimental Space Surveillance and Tracking Radar, über eine Laufzeit von vier Jahren mit 25 Millionen Euro.

»Wir – das heißt unsere Gesellschaft, Wirtschaft und Politik – sind von weltraumgestützten Diensten zur Navigation, Kommunikation und Erdbeobachtung abhängig. Um die Sicherheit der Satelliten zu gewährleisten, müssen wir wissen, was im Weltraum passiert«, sagt Dr. Andreas Brenner, stellvertretender Institutsleiter und Abteilungsleiter am FHR. GESTRA soll die Bahndaten von Satelliten und Trümmern in einer Höhe zwischen 300 und 3000 Kilometern erfassen. Aufgabe des experimentellen Radars ist es unter anderem, vor Zusammenstößen zu warnen, aber auch bei Eintritt von Objekten in die Atmosphäre Alarm zu schlagen.

Elektronisch schnell schwenkbare Antenne

Die FHR-Forscher sind erfahren im Aufbau von Radaranlagen: Mit TIRA (Tracking and Imaging Radar) betreiben sie bereits ein System, um Objekte im All aufzuspüren. »TIRA ist ein mechanisch schwenkbares System, mit dem man einzelne Objekte hochaufgelöst darstellen kann. Das neue Überwachungssystem hingegen ist eine elektronisch schwenkbare Antenne, die sich – da keine schweren Massen bewegt werden müssen – schnell schwenken lässt. Anders als TIRA kann sie sehr viele Objekte gleichzeitig beobachten. Sie spürt diese mit hoher Genauigkeit und Empfindlichkeit auf«, sagt Brenner.

Ein Team von zwanzig Forschern baut sowohl das Sende- als auch das Empfangssystem. Dabei handelt es sich jeweils um eine Phased-Array-Antenne als Sensor, die aus zahlreichen Einzelelementen besteht. Sie arbeitet im Frequenzbereich von 1,3 GHz. Dank Hochleistungsprozessoren kann diese Gruppenantenne in Sekundenbruchteilen von Satelliten und Weltraumtrümmern reflektierte Radarstrahlen aus mehreren Himmelsrichtungen zeitgleich empfangen. Sie ist in der Lage, simultan in mehrere Richtungen zu sehen und ein sehr großes Himmelsareal zu erfassen.

»Im Trackingmodus können wir einzelne Objekte gezielt verfolgen. Die Funktion der digitalen Keulenbildung ermöglicht es rechnergestützt, die Strahlenbündel – Experten bezeichnen diese als Keule – eng zu stellen und somit den Fokus gezielt auf ein einzelnes Objekt zu richten und dieses zu verfolgen. Das kann man mit dem Lichtkegel einer Taschenlampe vergleichen. Andererseits lässt sich die Keule weit aufziehen, sodass ein breiteres Areal beobachtet und auf diese Weise beispielsweise mehrere Trümmerteile verfolgt werden können«, erläutert Brenner.

Sowohl die Sende- als auch die Empfangseinheit lassen sich vollständig einfahren. Der Vorteil: Auf diese Weise ist der 4x4x16 Kubikmeter große Container, der das Radar beherbergen soll, mobil und kann transportiert werden. Das von DLR und Luftwaffe gemeinsam geführte Weltraumlagezentrum in Uedem wird GESTRA, das an einem anderen Standort aufgebaut wird, ferngesteuert betreiben. Das Weltraumüberwachungssystem soll ab 2018 den Messbetrieb aufnehmen. Die Daten von GESTRA sollen Forschungseinrichtungen in Deutschland zur Verfügung gestellt werden und die Grundlage für die künftige Entwicklung der Weltraumüberwachung bilden.

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2015/Juli/radar-schuetzt-...

Jens Fiege | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

nachricht Laser-Metronom ermöglicht Rekord-Synchronisation
12.01.2017 | Deutsches Elektronen-Synchrotron DESY

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie