Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radar schützt vor Weltraummüll

01.07.2015

Die Bedrohung im All durch Weltraummüll ist groß. Aktive Satelliten und Raumfahrzeuge können beschädigt oder zerstört werden. Ein neues, nationales Weltraumüberwachungssystem soll ab 2018 vor Gefahren im Orbit schützen. Fraunhofer-Forscher entwickeln das Radar im Auftrag des DLR Raumfahrtmanagement.

Die »Verkehrssituation« im All ist angespannt: Neben unzähligen Satelliten umkreisen Weltraumtrümmer wie beispielsweise ausgebrannte Raketenstufen und Bruchstücke von explodierten Raumfahrtobjekten die Erde. Diese verwandeln den Orbit zunehmend in einen Schrottplatz.


Sowohl die Sende- als auch die Empfangsantenne lassen sich vollständig einfahren.

© Fraunhofer FHR

Wissenschaftler schätzen, dass inzwischen etwa 20.000 Objekte mit einer Größe von mehr als zehn Zentimetern und einem Tempo von durchschnittlich 25.000 Kilometern pro Stunde um die Erde rasen. Hinzu kommen 700.000 Objekte, die größer als ein Zentimeter sind. Durch ihre enorme Geschwindigkeit können diese Trümmerteilchen aktive Satelliten beschädigen oder zerstören.

Besonders fatal: Weltraummüll vermehrt sich wie durch einen Schneeballeffekt selber. Stoßen zwei Partikel aufeinander, werden neue, kleinere Teilchen erzeugt. Ohne Gegenmaßnahmen nimmt der Schrott rapide zu und könnte Raumfahrt unmöglich machen.

Der Handlungsbedarf ist groß. Das Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt (DLR) konzipiert im Auftrag der Bundesregierung das deutsche Raumfahrtprogramm. Es hat das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR in Wachtberg beauftragt, ein Radar zu entwickeln und zu bauen, das Objekte im erdnahen Weltraum überwacht und verfolgt.

Denn dort ist die Kollisionsgefahr am größten – vor allem in einer Höhe von 800 Kilometern. Das Bundesministerium für Wirtschaft und Energie (BMWi) fördert das Projekt GESTRA, kurz für German Experimental Space Surveillance and Tracking Radar, über eine Laufzeit von vier Jahren mit 25 Millionen Euro.

»Wir – das heißt unsere Gesellschaft, Wirtschaft und Politik – sind von weltraumgestützten Diensten zur Navigation, Kommunikation und Erdbeobachtung abhängig. Um die Sicherheit der Satelliten zu gewährleisten, müssen wir wissen, was im Weltraum passiert«, sagt Dr. Andreas Brenner, stellvertretender Institutsleiter und Abteilungsleiter am FHR. GESTRA soll die Bahndaten von Satelliten und Trümmern in einer Höhe zwischen 300 und 3000 Kilometern erfassen. Aufgabe des experimentellen Radars ist es unter anderem, vor Zusammenstößen zu warnen, aber auch bei Eintritt von Objekten in die Atmosphäre Alarm zu schlagen.

Elektronisch schnell schwenkbare Antenne

Die FHR-Forscher sind erfahren im Aufbau von Radaranlagen: Mit TIRA (Tracking and Imaging Radar) betreiben sie bereits ein System, um Objekte im All aufzuspüren. »TIRA ist ein mechanisch schwenkbares System, mit dem man einzelne Objekte hochaufgelöst darstellen kann. Das neue Überwachungssystem hingegen ist eine elektronisch schwenkbare Antenne, die sich – da keine schweren Massen bewegt werden müssen – schnell schwenken lässt. Anders als TIRA kann sie sehr viele Objekte gleichzeitig beobachten. Sie spürt diese mit hoher Genauigkeit und Empfindlichkeit auf«, sagt Brenner.

Ein Team von zwanzig Forschern baut sowohl das Sende- als auch das Empfangssystem. Dabei handelt es sich jeweils um eine Phased-Array-Antenne als Sensor, die aus zahlreichen Einzelelementen besteht. Sie arbeitet im Frequenzbereich von 1,3 GHz. Dank Hochleistungsprozessoren kann diese Gruppenantenne in Sekundenbruchteilen von Satelliten und Weltraumtrümmern reflektierte Radarstrahlen aus mehreren Himmelsrichtungen zeitgleich empfangen. Sie ist in der Lage, simultan in mehrere Richtungen zu sehen und ein sehr großes Himmelsareal zu erfassen.

»Im Trackingmodus können wir einzelne Objekte gezielt verfolgen. Die Funktion der digitalen Keulenbildung ermöglicht es rechnergestützt, die Strahlenbündel – Experten bezeichnen diese als Keule – eng zu stellen und somit den Fokus gezielt auf ein einzelnes Objekt zu richten und dieses zu verfolgen. Das kann man mit dem Lichtkegel einer Taschenlampe vergleichen. Andererseits lässt sich die Keule weit aufziehen, sodass ein breiteres Areal beobachtet und auf diese Weise beispielsweise mehrere Trümmerteile verfolgt werden können«, erläutert Brenner.

Sowohl die Sende- als auch die Empfangseinheit lassen sich vollständig einfahren. Der Vorteil: Auf diese Weise ist der 4x4x16 Kubikmeter große Container, der das Radar beherbergen soll, mobil und kann transportiert werden. Das von DLR und Luftwaffe gemeinsam geführte Weltraumlagezentrum in Uedem wird GESTRA, das an einem anderen Standort aufgebaut wird, ferngesteuert betreiben. Das Weltraumüberwachungssystem soll ab 2018 den Messbetrieb aufnehmen. Die Daten von GESTRA sollen Forschungseinrichtungen in Deutschland zur Verfügung gestellt werden und die Grundlage für die künftige Entwicklung der Weltraumüberwachung bilden.

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2015/Juli/radar-schuetzt-...

Jens Fiege | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie