Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenfluktuationen unter dem Mikroskop

14.10.2011
Forscher am Max-Planck-Institut für Quantenoptik vermögen erstmals
Quantenfluktuationen am absoluten Temperaturnullpunkt direkt sichtbar zu machen.

Fluktuationen sind in unserer Alltagswelt grundlegend für zahlreiche physikalische Phänomene, so z.B. für den Phasenübergang von einer Flüssigkeit in ein Gas oder von einem Festkörper in eine Flüssigkeit. Selbst am absoluten Temperaturnullpunkt, an dem jede Bewegung in der klassischen Welt eingefroren ist, treten besondere quantenmechanische Fluktuationen auf, die den Übergang zwischen zwei Phasen verursachen können. Jetzt ist es einem Team um Immanuel Bloch und Stefan Kuhr am Max-Planck-Institut für Quantenoptik (MPQ) erstmals gelungen, solche Quantenfluktuationen direkt zu beobachten.


Abb.1: Schematische Darstellung der Atomverteilung im optischen Gitter. Die Quantenfluktuationen (weiß) sind im Bild als benachbarte Dunkelstellen zu erkennen (Bildmaterial online unter: www.quantum-munich.de/media/) MPQ/Abt. Quanten-Vielteilchensysteme

Wie die Forscher in der jüngsten Ausgabe von Science (14. Oktober 2011, DOI: 10.1126/science.1209284) berichten, konnten sie die Bildung von quantenkorrelierten Teilchen-Loch-Paaren in einem Gas ultrakalter Atome durch ein hochauflösendes Mikroskop sichtbar machen. Damit war es ihnen sogar möglich, eine vorliegende versteckte Ordnung zu enthüllen und somit verschiedene Phasen des Quantengases neu zu charakterisieren. Unterstützt wurden sie bei dieser Arbeit von Physikern aus der Abteilung Theorie am MPQ sowie Wissenschaftlern der ETH Zürich. Die Messungen eröffnen Möglichkeiten zur Beobachtung ungewöhnlicher neuer Quantenphasen.

Die Wissenschaftler beginnen damit, eine kleine Wolke von Rubidiumatomen auf nur wenige Nanokelvin über dem absoluten Nullpunkt, etwa minus 273 Grad Celsius, abzukühlen. Die Atome werden in ein Lichtfeld gehalten, das die Bewegungsfreiheit der Teilchen entscheidend einschränkt: sie dürfen sich nur noch entlang eindimensionaler, parallel verlaufender Röhren bewegen. Diesen Röhren aus Licht wird schließlich eine stehende Laserwelle überlagert, so dass sich die Atome in einer periodischen Aneinanderreihung heller und dunkler Gebiete befinden, einem eindimensionalen „optischen Gitter“.

Die Atome bewegen sich in den periodischen Lichtfeldern wie Elektronen in einem Festkörperkristall. Und so wie es elektrisch leitende und isolierende Festkörper gibt, können sich auch die Atome im Gitter bei tiefen Temperaturen mal wie eine Supraflüssigkeit und mal wie ein Isolator verhalten. Entscheidend ist dabei vor allem die Tiefe des optischen Gitters. Von ihr und der Abstoßung zwischen den Atomen hängt es ab, ob die Atome auf ihrem Platz fixiert sind oder von Gitterplatz zu Gitterplatz hüpfen können. Wenn das optische Gitter sehr tief ist, sitzt an jedem Platz genau ein Atom. Dieser hoch geordnete Zustand wird „Mott-Isolator“ genannt, nach dem britischen Physiker und Nobelpreisträger Sir Neville F. Mott. Wird die Gittertiefe ein wenig verringert, dann haben die Teilchen genügend Bewegungsenergie, um mit einer gewissen Wahrscheinlichkeit zum benachbarten Gitterplatz hinüber zu „tunneln“. Dadurch entstehen Paare aus leeren und doppelt besetzten Gitterplätzen, sogenannten Teilchen-Loch-Paare. Diese Quantenfluktuationen treten interessanterweise auch am absoluten Temperaturnullpunkt auf, an dem in der klassischen Welt jede Bewegung eingefroren ist. Die Position der quantenkorrelierten Teilchen-Loch Paare ist im Kristallgitter völlig unbestimmt und wird erst durch die Beobachtung der Atome festgelegt.

Bereits in früheren Experimenten hatten die Wissenschaftler unter Leitung von Stefan Kuhr und Immanuel Bloch Verfahren entwickelt, mit denen sie einzelne Atome auf einzelnen Gitterplätzen sichtbar machen können: Die Laserstrahlen, die das Quantengas kühlen, regen die Atome gleichzeitig zum Leuchten an. Ein eigens entwickeltes Mikroskop bildet die fluoreszierenden Atome Gitterplatz für Gitterplatz ab. Dabei erscheinen Löcher naturgemäß dunkel, doppelt besetzte Plätze aber auch, da die beiden Teilchen heftig miteinander zusammenstoßen und dabei aus dem Gitter herausfliegen. Teilchen-Loch Paare werden deshalb in den Mikroskopaufnahmen direkt als zwei dicht nebeneinander auftretende Dunkelstellen abgebildet. Das benachbarte Auftreten der Fluktuationen können die Physiker durch eine sogenannte Korrelationsfunktion quantitativ erfassen. „Mit dieser Technik können wir ein fundamentales Quantenphänomen erstmals direkt beobachten!“, begeistert sich Doktorand Manuel Endres.

Mit zunehmender Bewegungsenergie tunneln immer mehr Teilchen auf benachbarte Plätze und die Paar-Korrelationen nehmen zu. Wenn aber die Zahl der Teilchen-Loch-Paare sehr groß wird, lassen sich Löcher und doppelt besetzte Plätze nicht mehr eindeutig zuordnen. Deshalb nehmen die Korrelationen bei hoher Bewegungsenergie der Atome wieder ab. Schließlich geht die geordnete Struktur des Mott-Isolators ganz verloren und das Quantengas bildet eine Supraflüssigkeit. In dieser Phase treten Fluktuationen von Löchern und Teilchen völlig unabhängig voneinander auf. Der im Experiment beobachtete Verlauf der Quantenkorrelationen wird hervorragend durch Simulationsrechnungen wiedergegeben, die Mitarbeiter der Abteilung Theorie am MPQ und an der ETH Zürich durchführten. Interessanterweise zeigten entsprechende Messungen an zweidimensionalen Quantengasen, dass Quantenfluktuationen hier eine weit geringere Rolle spielen als in eindimensionalen Systemen.

Die Wissenschaftler beschränken sich aber nicht auf die Analyse von Korrelationen zweier benachbarter Gitterplätze. Vielmehr untersuchen sie auch Korrelationen zwischen mehreren Gitterplätzen entlang einer Kette. Solche nicht-lokalen Quantenkorrelationen enthalten wichtige Informationen über das zugrundeliegende Vielteilchensystem und lassen sich als Ordnungsparameter für die Charakterisierung verschiedener Quantenphasen nutzen. In der vorliegenden Arbeit wurden solche nicht-lokale, versteckte Ordnungsparameter erstmals experimentell gemessen. Diese Methode in Zukunft für die Detektion sogenannter topologischer Quantenphasen anzuwenden ist nun ein wesentliches Ziel der Wissenschaftler. Solche topologischen Phasen können die Grundlage robuster Quantenrechner bilden und könnten helfen, Supraleitung bei hohen Temperaturen zu verstehen. Olivia Meyer-Streng

Originalveröffentlichung:
M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Groß, L. Mazza, M.C. Banuls, L. Pollet, I. Bloch, and S. Kuhr
Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators

Science, 14. Oktober 2011, DOI: 10.1126/science.1209284

Kontakt:
Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 89 32905 138
E-Mail: immanuel.bloch@mpq.mpg.de
Prof. Dr. Stefan Kuhr
University of Strathclyde
Department of Physics
107 Rottenrow East
Glasgow G4 0NG, U.K.
Tel.: +44 141-548-3364
E-Mail: stefan.kuhr@strath.ac.uk
Manuel Endres
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Tel.: +49 89 32905 214
E-Mail: manuel.endres@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten