Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Pionierexperiment ermöglicht tiefen Röntgenblick in den Nanokosmos

22.02.2010
Einem internationalen Forscherteam unter Beteiligung der
TU Berlin gelangen Untersuchungen am stärksten Röntgenlaser der Welt / Ziel: Architektur einzelner Nanoteilchen entschlüsseln

Rund zwei Kilometer lang und etwa 300 Millionen Dollar teuer: Der "LCLS" in Stanford südlich von San Francisco ist seit letztem Jahr der mit Abstand stärkste Röntgenlaser der Welt. Die Blitze, die er erzeugt, sind millionenfach intensiver als die der bisherigen Röntgenquellen.

Ein internationales Forscherteam, zu dem auch Wissenschaftlerinnen und Wissenschaftler der TU Berlin gehören, hat jetzt einzelne Nanopartikel mit den Röntgen-Lichtblitzen der "Linac Coherent Light Source" abgebildet. Die in den Bildern enthaltene Information offenbart erstmals Details mit einer Auflösung im Bereich einiger millionstel Millimeter.

Möglich wurden die ultraschnellen Schnappschüsse dank einer Apparatur, die Forscher der Advanced Study Group (ASG) um Joachim Ullrich, Ilme Schlichting und Lothar Strüder von der Max-Planck-Institut für Kernphysik entwickelt haben. Die "CFEL ASG Multi Purpose" (CAMP) genannte Messkammer erlaubt ihnen, die Signale der Experimente extrem schnell und präzise zu messen. Mit den Pionierversuchen wird eine Hoffnung greifbar, die sich mit den neuen Röntgenlasern verbindet: Mit ihnen möchten Wissenschaftlerinnen und Wissenschaftler die Architektur einzelner Viren oder Proteine aufklären.

Zu den ersten Forscherinnen und Forschern des internationalen Teams, die mit dem neuen Röntgenlaser experimentiert haben, zählt auch eine Arbeitsgruppe der TU Berlin: Die Expertinnen und Ex-perten um den Physiker Thomas Möller vom Institut für Optik und Atomare Physik und Christoph Bostedt vom LCLS in Kalifornien konnten zeigen, dass ein einzelner Röntgenblitz ausreicht, um tiefe Einblicke in die Struktur einzelner "Cluster" zu gewinnen. So heißen winzige Nanoteilchen, in diesem Fall bestehend aus Tausenden von Xenon-Atomen.

Vom ringförmigen zum schnurgeraden Beschleuniger
Der neue Röntgenlaser steht am SLAC, einem großen US-Beschleunigerzentrum in Stanford. Gebaut wurde er bereits in den 60er-Jahren, mit einer Länge von drei Kilometern war er der damals größte Beschleuniger der Teilchenphysik. In den vergangenen Jahren haben ihn die US-Forscher zum leistungsfähigsten Röntgenlaser der Welt umgebaut. Das Prinzip: Ein langer Teilchenbeschleuniger bringt kurze Elektronensalven fast auf Lichtgeschwindigkeit, auf knapp 300.000 Kilometer pro Sekunde. Dann durchfliegen die Teilchen einen 112 Meter langen Parcour, flankiert von Dutzenden von Spezialmagneten, Undulatoren genannt. Diese Magnete haben die Aufgabe, die Elektronen auf eine Art Slalomkurs zu zwingen. Wenn die nahezu lichtschnellen Elektronen durch den Slalomparcours schlingern, geben sie extrem starke Röntgenstrahlung ab.

Das Prinzip, mit schnellen Elektronen Röntgenstrahlen zu erzeugen, machen sich Physiker zwar schon seit Jahrzehnten zu Nutze. Bislang aber verwendeten sie dazu vor allem ringförmige Beschleuniger. Die lange, schnurgerade Teilchenschleuder aus Kalifornien leitet eine neue Ära ein: Bei LCLS werden die Elektronen dazu gezwungen, quasi im Gleichschritt zu strahlen. Dadurch wird die abgegebene Röntgenstrahlung um das Millionenfache stärker als bei einem Ringbeschleuniger. Außerdem sind die Blitze extrem kurz - eine wichtige Voraussetzung für die Bildaufnahmen.

Freie-Elektronen-Laser, so nennt sich diese neue Quelle. Dass sie funktio-nieren, haben bereits kleinere Anlagen wie FLASH in Hamburg demonstriert. FLASH, seit 2005 als Experimentieranlage in Betrieb, basiert auf einem 300 Meter langen Elektronenbeschleuniger und erzeugt die stärksten Laserblitze der Welt im extremen UV-Bereich. Bereits hier haben die Berliner Physikerinnen und Physiker um Thomas Möller in ersten Experimenten erkundet, wie die hochintensiven UV-Pulse mit Nanoteilchen interagieren, zum Beispiel mit Edelgas-Clustern. LCLS hingegen generiert deutlich energiereichere Blitze - ultrakurze Laserpulse aus harter Röntgenstrahlung. Ließe sich das gesamte auf die Erde treffende Sonnenlicht mit einer Linse auf einen millimetergroßen Fleck bündeln, wäre der Brennfleck immer noch nicht so intensiv wie das Licht im Maximum eines einzigen Blitzes aus dem kalifornischen Röntgenlaser.

Die Wellenlänge von Röntgenstrahlung ist so kurz, dass sich damit in die Welt der Atome und Moleküle blicken lässt. Indem die Experten die Blitze auf ihre Proben schießen, hoffen sie, bis ins Detail erkunden zu können, wie sich ein Material, ein Molekül oder ein Nanoteilchen aus einzelnen Atomen zusammensetzt. Aber: Mit seiner extrem hohen Intensität zerstört der Röntgenblitz die Proben innerhalb weniger Femtosekunden - eine extrem kurze Zeitspanne, in der Licht gerade mal die Dicke eines menschlichen Haars durchläuft. Das Team um Thomas Möller konnte nun nachweisen, dass es tatsächlich gelingen kann, winzige Xenon-Cluster detailliert mit den starken LCLS-Pulsen abzubilden und zu untersuchen.

Wichtiges Grundlagenwissen auch für Biologie und Medizin
"Die Experimente an Clustern liefern einen Einblick in die Wechselwirkung der extrem intensiven Lichtpulse mit den Nanoteilchen, die praktisch sofort nach der Abbildung zerfallen", erläutert Möller. "Mit unseren Experimenten schaffen wir Grundlagenwissen, das helfen wird, auch andere Nanoteilchen mit einem Röntgenlaser zu untersuchen." Im Interesse stehen vor allem einzelne Biomoleküle wie Proteine, deren Struktur Biologen so detailliert wie möglich aufklären wollen.

Möglich wurden die Schnappschüsse dank der Apparatur, die Max-Planck-Forscher der Advanced Study Group (ASG) um Joachim Ullrich und Lothar Stüder (München) entwickelt haben. Die Messkammer namens CAMP erlaubte es dem Team, die "Bilder" einzelner Cluster extrem schnell aufzunehmen. Das vier Millionen Euro teure und zehn Tonnen schwere Gerät enthält die weltweit größten und schnellsten Röntgen-CCD-Chips, sie messen Energie und Intensität des von der Probe gestreuten Lichts. "CAMP ist so erfolgreich, dass fast ein Drittel der bisher am LCLS genehmigten Experimente damit gemacht werden", sagt ASG-Leiter Joachim Ullrich, Direktor am Max-Planck Institut für Kernphysik in Heidelberg. Der Grund: CAMP liefert viele unterschiedliche Informationen gleichzeitig und optimiert die Untersuchungen.

Information über die innerhalb extrem kurzer Zeit ablaufenden Prozesse
Mit dem Forscherteam haben die Berliner Physiker um Thomas Möller die Röntgenpulse aus dem Laser direkt in die CAMP-Messkammer geführt und mit Spiegeln auf einzelne Cluster fokussiert. Mit Hilfe der CCD-Chips konnten sie sowohl einzelne Cluster abbilden als auch deren Bruchstücke nachweisen - schließlich sind die Röntgenblitze so stark, dass sie die Nanoteilchen buchstäblich in Stücke hauen. Unter anderem haben die Forscher herausgefunden, wie sich die Teilchen mit den Röntgenblitzen treffen lassen und welche Informationen sie dabei über ihre Struktur preisgeben. "Die Experimente liefern wichtige Information über die innerhalb extrem kurzer Zeit ablaufenden Prozesse, die für die Abbildung einzelner Nanoteilchen relevant sind", sagt Möller.

Viele Biomoleküle, die in lebenden Organismen eine wichtige Rolle spielen, entziehen sich der Strukturaufklärung mit den bisherigen Methoden. Die Strukturaufklärung von derartigen Molekülen ist das Ziel einer ganzen Reihe von Arbeitsgruppen insbesondere auch von Ilme Schlichting, Direktorin am Max-Planck-Institut für Medizinische Forschung in Heidelberg. Ein einzelnes Protein-Molekül aber liefert in der konventionellen Röntgenstrukturanalyse kein erkennbares Signal. "Wenn wir das Röntgenlicht also nicht an vielen Molekülen in einem Kristall streuen können, müssen wir mit extrem intensiven und kurzen Lichtpulsen arbeiten", sagt Ilme Schlichting.

Langfristig versprechen sich die Wissenschaftler hier völlig neue Einblicke in die Welt des Winzigen. Ein Lichtblitz des Röntgenlasers könnte ihnen etwas über die Struktur einzelner Viren oder Proteine verraten. Bislang müssen die Biologen dazu kleine Kristalle aus den Proteinen züchten, um sie anschließend mit Röntgenlicht zu durchleuchten. Doch etwa 60 Prozent aller Biomoleküle lassen sich schlicht nicht kristallisieren - und entziehen sich damit bislang einer detaillierten Strukturanalyse. Dazu zählen auch viele Membran-Eiweiße. Sie sind für die Medizin höchst maßgeblich, denn fast die Hälfte aller derzeitigen Arzneien setzen an Membran-Eiweißen an. Große Röntgenlaser wie LCLS oder künftig der Europäische Röntgenlaser (European XFEL), der ab 2014 in Hamburg leuchten soll, können Abhilfe schaffen: Ihre Blitze sind derart intensiv, dass man hofft, dass bereits wenige Biomoleküle ausreichen, um sie ablichten zu können. Mit den Pionierversuchen in Kalifornien ist man diesem Ziel einen wichtigen Schritt näher gekommen.

Weitere Informationen erteilt Ihnen gern: Prof. Dr. Thomas Möller, TU Ber-lin, Institut für Optik und Atomare Physik, E-Mail: thomas.moeller@physik.tu-berlin.de, Tel.: 030/314 23712

Dr. Kristina R. Zerges | idw
Weitere Informationen:
http://www.mpg.de/
http://www.ioap.tu-berlin.de/menue/arbeitsgruppen/ag_moeller/ag_moeller/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie