Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oszillierende Kurven bringen Theorien ins Wanken

03.11.2009
Im Hochfeld-Magnetlabor Dresden am Forschungszentrum Dresden-Rossendorf (FZD) stehen höchste Magnetfelder für die Materialforschung zur Verfügung.

Physiker vom Walther-Meißner-Institut der Bayerischen Akademie der Wissenschaften (Garching) entdeckten hier mit äußerst präzisen Messungen bisher unbekannte metallische Eigenschaften von Hochtemperatur-Supraleitern. Die vor kurzem in der Fachzeitschrift "Physical Review Letters" vorgestellten Ergebnisse riefen in kurzer Zeit ein großes Echo in der Fachwelt hervor.

Das Hochfeld-Magnetlabor Dresden stellt mit großer Verlässlichkeit höchste gepulste Magnetfelder bis 70 Tesla für die Forschung zur Verfügung und hat sich damit einen Namen bei Wissenschaftlern aus aller Welt gemacht. Dieses Mal kamen die Messgäste aus dem bayerischen Garching. Die Gruppe von Prof. Rudolf Gross brachte bestens präparierte Materialproben eines komplex aufgebauten Kuprats - das ist eine Verbindung aus Kupfer, Sauerstoff und anderen Elementen - nach Dresden mit, um endlich die widersprüchlichen theoretischen Vorstellungen zu Hochtemperatur-Supraleitern zu bestätigen oder zu widerlegen.

Die Fachwelt hat auf diese Messungen rund 20 Jahre gewartet, denn hohe Magnetfelder jenseits von 60 Tesla in Kombination mit ausgefeilten Untersuchungstechniken an hervorragend ausgestatteten Laborplätzen existieren europaweit erst seit kurzem in Dresden.

Solch hohe Magnetfelder sind, gerade wenn es um Hochtemperatur-Supraleiter geht, unumgänglich, um die Supraleitung bei tiefen Temperaturen unterdrücken und die Materialien im normalleitenden Zustand gründlich untersuchen zu können. Wie vor mehr als 20 Jahren entdeckt, leiten die Substanzen normalerweise schon bei relativ hohen Temperaturen, also in dem gut zugänglichen Bereich von rund -150 bis -200 Grad C°, verlustfrei Strom. Deshalb wird ihnen eine große technologische Zukunft vorhergesagt, doch mangelt es immer noch am Grundverständnis. Ohne dieses aber ist ein gezielter Einsatz der Materialien für neue Hochtechnologien kaum möglich.

Die Physiker aus Garching und Dresden konnten nun dem Grundverständnis von Hochtemperatur-Supraleitern einen besonders wichtigen Baustein hinzufügen. In einer mehrwöchigen Messkampagne setzten sie drei unterschiedliche Kuprat-Proben Magnetfeldern bis zu rund 65 Tesla aus und maßen jeweils den elektrischen Widerstand im Magnetfeld. Heraus kamen wunderbar oszillierende Kurven, die die gängigen Theorien ins Wanken bringen. Doch zunächst muss man wissen, dass Supraleitung bei den Kupraten entsteht, wenn man bestimmte Atome durch andere ersetzt (dotiert). Dabei waren die drei Proben je unterschiedlich dotiert. Während die eine durch die Dotierung optimal supraleitend gemacht wurde, zeigte eine andere die Supraleitung erst bei tieferen Temperaturen. Im Rossendorfer Magnetlabor stellte sich nun heraus, dass sich die Supraleiter im normalleitenden Zustand - also bei unterdrückter Supraleitung - ganz anders verhalten als bisher angenommen. Dieser ungewöhnliche metallische Zustand ist zugleich das grundsätzliche Problem, das es zu verstehen und zu lösen gilt.

Metalle sind üblicherweise leitfähig. Das verdanken sie den freien Elektronen, die mehr oder weniger schnell durch das Kristallgitter hindurchflitzen, dabei aber immer wieder mit anderen Teilchen zusammenstoßen, was zum elektrischen Widerstand führt. Wie schnell die Elektronen in verschiedenen Richtungen durch das Kristallgitter fliegen, wird durch die sogenannte Fermi-Fläche beschrieben. Für die Hochtemperatur-Supraleiter wurde diese übliche Theorie der Metalle in Frage gestellt und vermutet, dass sie weitaus komplexere Eigenschaften haben.

Die Experimente am Hochfeld-Magnetlabor Dresden beweisen jedoch, dass sich Hochtemperatur-Supraleiter durchaus wie Metalle verhalten. Der Beweis: alle untersuchten Proben haben eine Fermi-Fläche. Wohldefinierte Fermi-Flächen, so nahm man bisher an, sollte es für Hochtemperatur-Supraleiter nicht einmal im normalleitenden Zustand, also bei unterdrückter Supraleitung, geben.

Die aktuellen Ergebnisse weisen bei allen Proben zusammenhängende Fermi-Flächen aus, denn alle Messkurven aus Rossendorf zeigen eindeutige "Wackler", also Oszillationen im Magnetfeld. Allerdings ändert sich die Fermi-Fläche in Abhängigkeit von der Dotierung, doch erstaunlicherweise findet man selbst im Bereich der optimalen Dotierung eine kleine Fermi-Fläche. Diese Ergebnisse sind tatsächlich einmalig, denn noch nie zuvor konnten diese Änderungen der Fermi-Flächen bei Hochtemperatur-Supraleitern direkt nachgewiesen werden. Dies wirft ein völlig neues Licht auf die vorherrschenden Theorien zur Natur der Supraleitung in dotierten Hochtemperatur-Supraleitern.

Die sorgfältigen Messungen des magnetischen Widerstands am Hochfeld-Magnetlabor Dresden des FZD erlauben es, Änderungen dieser Messgröße auf besser als 0,02 Prozent zu bestimmen. Erst diese hohe Auflösung erlaubte es, die Oszillationen im Widerstand nachzuweisen. Weitere Messungen sollen folgen, um zu verstehen, warum genau sich die Fermi-Fläche mit der Dotierung ändert und wie genau die metallischen, supraleitenden und magnetischen Eigenschaften voneinander abhängen. Die Physiker erhoffen sich auch Antworten darauf, wie genau die Übergänge zwischen dem normalleitenden und dem supraleitenden Zustand beschaffen sind. Nur so wird es in der Zukunft möglich sein, maßgeschneiderte Hochtemperatur-Supraleiter für den breiten technologischen Einsatz herzustellen.

Veröffentlichung:
T. Helm1, M.V. Kartsovnik1, M. Bartkowiak2, N. Bittner1, M. Lambacher1, A. Erb1, J. Wosnitza2, R. Gross13, "Evolution of the Fermi Surface of the Electron-Doped High-Temperature Superconductor Nd2-xCexCuO4 Revealed by Shubnikov-de Haas Oscillations", in: Phys. Rev. Lett. 103 (2009), 157002. DOI: 10.1103/PhysRevLett.103.157002.
1) Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching
2) Hochfeld-Magnetlabor Dresden, Forschungszentrum Dresden-Rossendorf (FZD)
3) Physik-Department Technische Universität München
Weitere Informationen:
Prof. Joachim Wosnitza
Institut Hochfeld-Magnetlabor Dresden am FZD
Tel.: 0351 260 - 3524 | E-Mail: j.wosnitza@fzd.de
Dr. Mark Kartsovnik
Walther-Meißner-Institut, Garching
Tel.: 089 289-14223 | E-Mail: mark.kartsovnik@wmi.badw.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 400, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
E-Mail: presse@fzd.de
Information:
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit, Struktur der Materie und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:
- Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
- Wie schützt man Mensch und Umwelt vor technischen Risiken?
Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird als Mitglied der Leibniz-Gemeinschaft von Bund und Land gefördert, verfügt über ein Budget von mehr als 70 Mio. Euro (2008) und beschäftigt rund 750 Personen.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de
http://www.wmi.badw.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Berner Mars-Kamera liefert erste farbige Bilder vom Mars
26.04.2018 | Universität Bern

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz »Encoding Cultures. Leben mit intelligenten Maschinen« | 27. & 28.04.2018 ZKM | Karlsruhe

26.04.2018 | Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltrekord an der Uni Paderborn: Optische Datenübertragung mit 128 Gigabits pro Sekunde

26.04.2018 | Informationstechnologie

Multifunktionaler Mikroschwimmer transportiert Fracht und zerstört sich selbst

26.04.2018 | Biowissenschaften Chemie

Berner Mars-Kamera liefert erste farbige Bilder vom Mars

26.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics