Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Oszillierende Kurven bringen Theorien ins Wanken

03.11.2009
Im Hochfeld-Magnetlabor Dresden am Forschungszentrum Dresden-Rossendorf (FZD) stehen höchste Magnetfelder für die Materialforschung zur Verfügung.

Physiker vom Walther-Meißner-Institut der Bayerischen Akademie der Wissenschaften (Garching) entdeckten hier mit äußerst präzisen Messungen bisher unbekannte metallische Eigenschaften von Hochtemperatur-Supraleitern. Die vor kurzem in der Fachzeitschrift "Physical Review Letters" vorgestellten Ergebnisse riefen in kurzer Zeit ein großes Echo in der Fachwelt hervor.

Das Hochfeld-Magnetlabor Dresden stellt mit großer Verlässlichkeit höchste gepulste Magnetfelder bis 70 Tesla für die Forschung zur Verfügung und hat sich damit einen Namen bei Wissenschaftlern aus aller Welt gemacht. Dieses Mal kamen die Messgäste aus dem bayerischen Garching. Die Gruppe von Prof. Rudolf Gross brachte bestens präparierte Materialproben eines komplex aufgebauten Kuprats - das ist eine Verbindung aus Kupfer, Sauerstoff und anderen Elementen - nach Dresden mit, um endlich die widersprüchlichen theoretischen Vorstellungen zu Hochtemperatur-Supraleitern zu bestätigen oder zu widerlegen.

Die Fachwelt hat auf diese Messungen rund 20 Jahre gewartet, denn hohe Magnetfelder jenseits von 60 Tesla in Kombination mit ausgefeilten Untersuchungstechniken an hervorragend ausgestatteten Laborplätzen existieren europaweit erst seit kurzem in Dresden.

Solch hohe Magnetfelder sind, gerade wenn es um Hochtemperatur-Supraleiter geht, unumgänglich, um die Supraleitung bei tiefen Temperaturen unterdrücken und die Materialien im normalleitenden Zustand gründlich untersuchen zu können. Wie vor mehr als 20 Jahren entdeckt, leiten die Substanzen normalerweise schon bei relativ hohen Temperaturen, also in dem gut zugänglichen Bereich von rund -150 bis -200 Grad C°, verlustfrei Strom. Deshalb wird ihnen eine große technologische Zukunft vorhergesagt, doch mangelt es immer noch am Grundverständnis. Ohne dieses aber ist ein gezielter Einsatz der Materialien für neue Hochtechnologien kaum möglich.

Die Physiker aus Garching und Dresden konnten nun dem Grundverständnis von Hochtemperatur-Supraleitern einen besonders wichtigen Baustein hinzufügen. In einer mehrwöchigen Messkampagne setzten sie drei unterschiedliche Kuprat-Proben Magnetfeldern bis zu rund 65 Tesla aus und maßen jeweils den elektrischen Widerstand im Magnetfeld. Heraus kamen wunderbar oszillierende Kurven, die die gängigen Theorien ins Wanken bringen. Doch zunächst muss man wissen, dass Supraleitung bei den Kupraten entsteht, wenn man bestimmte Atome durch andere ersetzt (dotiert). Dabei waren die drei Proben je unterschiedlich dotiert. Während die eine durch die Dotierung optimal supraleitend gemacht wurde, zeigte eine andere die Supraleitung erst bei tieferen Temperaturen. Im Rossendorfer Magnetlabor stellte sich nun heraus, dass sich die Supraleiter im normalleitenden Zustand - also bei unterdrückter Supraleitung - ganz anders verhalten als bisher angenommen. Dieser ungewöhnliche metallische Zustand ist zugleich das grundsätzliche Problem, das es zu verstehen und zu lösen gilt.

Metalle sind üblicherweise leitfähig. Das verdanken sie den freien Elektronen, die mehr oder weniger schnell durch das Kristallgitter hindurchflitzen, dabei aber immer wieder mit anderen Teilchen zusammenstoßen, was zum elektrischen Widerstand führt. Wie schnell die Elektronen in verschiedenen Richtungen durch das Kristallgitter fliegen, wird durch die sogenannte Fermi-Fläche beschrieben. Für die Hochtemperatur-Supraleiter wurde diese übliche Theorie der Metalle in Frage gestellt und vermutet, dass sie weitaus komplexere Eigenschaften haben.

Die Experimente am Hochfeld-Magnetlabor Dresden beweisen jedoch, dass sich Hochtemperatur-Supraleiter durchaus wie Metalle verhalten. Der Beweis: alle untersuchten Proben haben eine Fermi-Fläche. Wohldefinierte Fermi-Flächen, so nahm man bisher an, sollte es für Hochtemperatur-Supraleiter nicht einmal im normalleitenden Zustand, also bei unterdrückter Supraleitung, geben.

Die aktuellen Ergebnisse weisen bei allen Proben zusammenhängende Fermi-Flächen aus, denn alle Messkurven aus Rossendorf zeigen eindeutige "Wackler", also Oszillationen im Magnetfeld. Allerdings ändert sich die Fermi-Fläche in Abhängigkeit von der Dotierung, doch erstaunlicherweise findet man selbst im Bereich der optimalen Dotierung eine kleine Fermi-Fläche. Diese Ergebnisse sind tatsächlich einmalig, denn noch nie zuvor konnten diese Änderungen der Fermi-Flächen bei Hochtemperatur-Supraleitern direkt nachgewiesen werden. Dies wirft ein völlig neues Licht auf die vorherrschenden Theorien zur Natur der Supraleitung in dotierten Hochtemperatur-Supraleitern.

Die sorgfältigen Messungen des magnetischen Widerstands am Hochfeld-Magnetlabor Dresden des FZD erlauben es, Änderungen dieser Messgröße auf besser als 0,02 Prozent zu bestimmen. Erst diese hohe Auflösung erlaubte es, die Oszillationen im Widerstand nachzuweisen. Weitere Messungen sollen folgen, um zu verstehen, warum genau sich die Fermi-Fläche mit der Dotierung ändert und wie genau die metallischen, supraleitenden und magnetischen Eigenschaften voneinander abhängen. Die Physiker erhoffen sich auch Antworten darauf, wie genau die Übergänge zwischen dem normalleitenden und dem supraleitenden Zustand beschaffen sind. Nur so wird es in der Zukunft möglich sein, maßgeschneiderte Hochtemperatur-Supraleiter für den breiten technologischen Einsatz herzustellen.

Veröffentlichung:
T. Helm1, M.V. Kartsovnik1, M. Bartkowiak2, N. Bittner1, M. Lambacher1, A. Erb1, J. Wosnitza2, R. Gross13, "Evolution of the Fermi Surface of the Electron-Doped High-Temperature Superconductor Nd2-xCexCuO4 Revealed by Shubnikov-de Haas Oscillations", in: Phys. Rev. Lett. 103 (2009), 157002. DOI: 10.1103/PhysRevLett.103.157002.
1) Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching
2) Hochfeld-Magnetlabor Dresden, Forschungszentrum Dresden-Rossendorf (FZD)
3) Physik-Department Technische Universität München
Weitere Informationen:
Prof. Joachim Wosnitza
Institut Hochfeld-Magnetlabor Dresden am FZD
Tel.: 0351 260 - 3524 | E-Mail: j.wosnitza@fzd.de
Dr. Mark Kartsovnik
Walther-Meißner-Institut, Garching
Tel.: 089 289-14223 | E-Mail: mark.kartsovnik@wmi.badw.de
Pressekontakt:
Dr. Christine Bohnet
Forschungszentrum Dresden-Rossendorf (FZD)
Presse- und Öffentlichkeitsarbeit
Bautzner Landstr. 400, 01328 Dresden
Tel.: 0351 260 - 2450 oder 0160 969 288 56
E-Mail: presse@fzd.de
Information:
Das Forschungszentrum Dresden-Rossendorf (FZD) hat das Ziel, strategisch und langfristig ausgerichtete Spitzenforschung in politisch und gesellschaftlich relevanten Forschungsthemen wie Energie, Gesundheit, Struktur der Materie und Schlüsseltechnologien zu leisten. Folgende Fragestellungen stehen dabei im Mittelpunkt:
- Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
- Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
- Wie schützt man Mensch und Umwelt vor technischen Risiken?
Diese Fragestellungen werden in strategischen Kooperationen mit Forschungs- und Industriepartnern bearbeitet. Ein weiterer Schwerpunkt ist der Betrieb von sechs einmaligen Großgeräten, die auch externen Nutzern zur Verfügung stehen.

Das FZD wird als Mitglied der Leibniz-Gemeinschaft von Bund und Land gefördert, verfügt über ein Budget von mehr als 70 Mio. Euro (2008) und beschäftigt rund 750 Personen.

Dr. Christine Bohnet | idw
Weitere Informationen:
http://www.fzd.de
http://www.wmi.badw.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz

Neue Arten in der Nordsee-Kita

05.12.2016 | Biowissenschaften Chemie

Alter beeinflusst den Mikronährstoffgehalt im Blut

05.12.2016 | Biowissenschaften Chemie