Nanosonar misst mit Elektronen unter der Oberfläche

So wie ein Sonar Schallwellen aussendet, um die dunklen Tiefen der Ozeane zu erkunden, können Elektronen von Rastertunnelmikroskopen genutzt werden, um tief verborgene Eigenschaften des Atomgitters der Metalle zu untersuchen.

Wie Forscher aus Göttingen, Halle und Jülich nun im Fachmagazin „Science“ berichten, haben sie auf diese Art die so genannten Fermi-Flächen im Innern sichtbar gemacht; diese bestimmen die wesentlichen Eigenschaften von Metallen.

„Die Fermi-Flächen geben den Metallen im eigentlichen Sinne ihre Persönlichkeit“, erklärt Prof. Stefan Blügel, Direktor am Jülicher Institut für Festkörperforschung. Wichtige Eigenschaften, wie Leitfähigkeit, Wärmekapazität und Magnetismus, werden durch sie festgelegt. Auf den Fermi-Flächen innerhalb des Atomverbundes bewegen sich die energiereichsten Elektronen. Je nachdem, welche Form die Flächen haben und welche Beweglichkeit den Elektronen zukommt, bestimmen sie die physikalischen Eigenschaften der Metalle.

In ihrer aktuellen Veröffentlichung berichten die Forscher, dass sie ein Rastertunnelmikroskop nutzen, um Elektronen in eine Kupferprobe zu leiten. Da sich die Elektronen wie Wellen ausbreiten, durchlaufen sie das Metall und werden an Hindernissen in der Tiefe, wie etwa einzelnen Kobaltatomen, gestreut und reflektiert. „Die Überlagerung der einkommenden und ausgehenden Wellen ist so stark“, sagt Dr. Samir Lounis vom Forschungszentrum Jülich, der die theoretischen Berechnungen zum Experiment gemacht hat, „dass sie mit dem Rastertunnelmikroskop an der Oberfläche als ringförmige Strukturen zu messen sind“.

Die etwas deformierten Ringe auf der Oberfläche erlauben es, direkte Rückschlüsse auf die Form der Fermi-Flächen und die Tiefe des Kobaltatoms zu ziehen, so wie ein Sonar aus den reflektierten Schallwellen den Meeresgrund erkennt. „Mit verfeinerten Methoden wird es sicher möglich sein, tief liegende Fremdatome und Grenzflächen zwischen Atomgittern detailliert zu verstehen“, erläutert Lounis. Für seine Simulationen des Rastersondenexperimentes nutzte er auch den Superrechner JUMP im Jülich Supercomputing Centre.

Im begleitenden „Perspective Article“ im Magazin Science wird der innovative Ansatz gelobt. Ein Rastertunnelmikroskop dient in erster Linie der Vermessung der Oberfläche von Proben. Dank der theoretischen Arbeiten aus Jülich lässt es sich nun nutzen, um in den Tiefen von Festkörpern einen direkten Einblick zu bekommen und interessante Effekte der Nanowelt zu verstehen.

Science, 27 February 2009, Vol 323, Issue 5918, Seeing the Fermi Surface in Real Space by Nanoscale Electron Focusing, Weismann et al.

Ansprechpartner:
Dr. Samir Lounis, Tel. 02461 61-6106 , E-Mail: s.lounis@fz-juelich.de Prof. Stefan Blügel, Tel. 02461 61-4249, E-Mail: s.bluegel@fz-juelich.de
Pressekontakt:
Kosta Schinarakis, Tel. 02461 61-4771, E-Mail: k.schinarakis@fz-juelich.de Angela Wenzik, Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de
Das Forschungszentrum Jülich…
… betreibt interdisziplinäre Spitzenforschung zur Lösung großer gesellschaftlicher Herausforderungen in den Bereichen Gesundheit, Energie und Umwelt sowie Informationstechnologie. Kombiniert mit den beiden Schlüsselkompetenzen Physik und Supercomputing werden in Jülich sowohl langfristige, grundlagenorientierte und fächerübergreifende Beiträge zu Naturwissenschaften und Technik erarbeitet als auch konkrete technologische Anwendungen. Mit rund 4 400 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den größten Forschungszentren Europas.

Media Contact

Kosta Schinarakis Forschungszentrum Jülich GmbH

Weitere Informationen:

http://www.fz-juelich.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer