Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Nanodrähte so anziehend macht

14.07.2009
Festkörperphysiker der Universität Jena weisen Halbleiter-Nanodrähte mit magnetischen Eigenschaften eindeutig nach / Publikation erscheint heute in "Nature Nanotechnology"

Die "Anziehungskraft" winzigster Nanodrähte beruht für Prof. Dr. Carsten Ronning nicht nur auf seinen besonderen wissenschaftlichen Interessen. Dem Physiker von der Friedrich-Schiller-Universität Jena, zu dessen Forschungsschwerpunkten Halbleiter-Nanodrähte gehören, ist es jetzt erstmals gelungen, eindeutig nachzuweisen, dass Kobalt-dotierte Nanodrähte aus Zinkoxid intrinsische ferromagnetische Eigenschaften besitzen.

"Im Prinzip funktionieren diese wie winzige Stabmagneten", erläutert der Inhaber des Lehrstuhls für Festkörperphysik. Seine Forschungsergebnisse, die in enger Zusammenarbeit mit Kollegen der Chinese University of Hongkong entstanden sind, werden in der aktuellen Online Ausgabe der renommierten Fachzeitschrift "Nature Nanotechnology" veröffentlicht.

Die Herstellung magnetischer Halbleiter-Nanodrähte ist bisher reine Grundlagenforschung, wie Ronning betont. Doch mittelfristig "können wir damit möglicherweise helfen, die Tür zur Spintronik aufzustoßen." Mit "Spintronik" wird ein neues Gebiet der Halbleiterphysik bezeichnet: Während die traditionelle Halbleiterelektronik auf den elektrischen Ladungen der Elektronen beruht, nutzt die Spintronik zusätzlich den Spin - den Eigen-Drehimpuls - der Elektronen aus. "Dieser Impuls kann in zwei verschiedenen Richtungen auftreten, woraus ein magnetisches Moment resultiert", erläutert Prof. Ronning.

Diese Neuentwicklung hätte handfeste Vorteile. So benötigen gängige elektronische Bauelemente etwa 10.000 bis 100.000 Elektronen für einen einzelnen Schaltvorgang. Halbleiterbauelemente, die nur den Spin von Elektronen schalten, kommen mit einem einzelnen Elektron aus, um die notwendige Information zu transportieren. "Das bedeutet, dass Spintronik-Halbleiter sehr viel schneller schalten könnten, als herkömmliche elektronische Bauelemente", so Ronning. Zudem würden diese mit einem Bruchteil an Strom auskommen.

Voraussetzung für die praktische Weiterentwicklung der Spintronik ist jedoch, dass sich Halbleiter mit intrinsischen ferromagnetischen Eigenschaften überhaupt herstellen lassen. Daran wird seit rund einem Jahrzehnt weltweit intensiv geforscht - bislang jedoch mit mäßigem Erfolg. "Bisher gab es keine Methode, die eindeutig den intrinsischen Ferromagnetismus nachweisen konnte." Dank der Jenaer Physiker und ihrer chinesischen Kollegen ist man nun einen entscheidenden Schritt weiter.

Für die vorliegende Arbeit hat Prof. Ronning und sein Team das Jenaer Knowhow in der Herstellung von Halbleiter-Nanostrukturen und deren optischer Charakterisierung genutzt und Zinkoxid-Drähte dotiert. Diese wurden dann von den chinesischen Kollegen um Prof. Dr. Quan Li, eine ausgewiesene Expertin im Bereich Elektronenmikroskopie, auf ihre magnetischen Eigenschaften untersucht. "Wir haben festgestellt, dass die Kobalt-Dotierung den Nanodrähten intrinsische ferromagnetische Eigenschaften verleiht, während Eisen das nicht kann", kommentiert Prof. Li das überraschende Ergebnis. Weitere Untersuchungen sollen nun klären, worauf diese Unterschiede beruhen.

Die Originalpublikation "Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures" ist ab heute (19 Uhr) abrufbar unter: http://www.nature.com/doifinder/10.1038/nnano.2009.181

Kontakt:
Prof. Dr. Carsten Ronning
Institut für Festkörperphysik der Friedrich-Schiller-Universität Jena
Helmholtzweg 3, 07743 Jena
Tel.: 03641 / 947300
E-Mail: carsten.ronning@uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.nano.uni-jena.de/
http://www.uni-jena.de
http://www.nature.com/doifinder/10.1038/nnano.2009.181

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics