Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was Nanodrähte so anziehend macht

14.07.2009
Festkörperphysiker der Universität Jena weisen Halbleiter-Nanodrähte mit magnetischen Eigenschaften eindeutig nach / Publikation erscheint heute in "Nature Nanotechnology"

Die "Anziehungskraft" winzigster Nanodrähte beruht für Prof. Dr. Carsten Ronning nicht nur auf seinen besonderen wissenschaftlichen Interessen. Dem Physiker von der Friedrich-Schiller-Universität Jena, zu dessen Forschungsschwerpunkten Halbleiter-Nanodrähte gehören, ist es jetzt erstmals gelungen, eindeutig nachzuweisen, dass Kobalt-dotierte Nanodrähte aus Zinkoxid intrinsische ferromagnetische Eigenschaften besitzen.

"Im Prinzip funktionieren diese wie winzige Stabmagneten", erläutert der Inhaber des Lehrstuhls für Festkörperphysik. Seine Forschungsergebnisse, die in enger Zusammenarbeit mit Kollegen der Chinese University of Hongkong entstanden sind, werden in der aktuellen Online Ausgabe der renommierten Fachzeitschrift "Nature Nanotechnology" veröffentlicht.

Die Herstellung magnetischer Halbleiter-Nanodrähte ist bisher reine Grundlagenforschung, wie Ronning betont. Doch mittelfristig "können wir damit möglicherweise helfen, die Tür zur Spintronik aufzustoßen." Mit "Spintronik" wird ein neues Gebiet der Halbleiterphysik bezeichnet: Während die traditionelle Halbleiterelektronik auf den elektrischen Ladungen der Elektronen beruht, nutzt die Spintronik zusätzlich den Spin - den Eigen-Drehimpuls - der Elektronen aus. "Dieser Impuls kann in zwei verschiedenen Richtungen auftreten, woraus ein magnetisches Moment resultiert", erläutert Prof. Ronning.

Diese Neuentwicklung hätte handfeste Vorteile. So benötigen gängige elektronische Bauelemente etwa 10.000 bis 100.000 Elektronen für einen einzelnen Schaltvorgang. Halbleiterbauelemente, die nur den Spin von Elektronen schalten, kommen mit einem einzelnen Elektron aus, um die notwendige Information zu transportieren. "Das bedeutet, dass Spintronik-Halbleiter sehr viel schneller schalten könnten, als herkömmliche elektronische Bauelemente", so Ronning. Zudem würden diese mit einem Bruchteil an Strom auskommen.

Voraussetzung für die praktische Weiterentwicklung der Spintronik ist jedoch, dass sich Halbleiter mit intrinsischen ferromagnetischen Eigenschaften überhaupt herstellen lassen. Daran wird seit rund einem Jahrzehnt weltweit intensiv geforscht - bislang jedoch mit mäßigem Erfolg. "Bisher gab es keine Methode, die eindeutig den intrinsischen Ferromagnetismus nachweisen konnte." Dank der Jenaer Physiker und ihrer chinesischen Kollegen ist man nun einen entscheidenden Schritt weiter.

Für die vorliegende Arbeit hat Prof. Ronning und sein Team das Jenaer Knowhow in der Herstellung von Halbleiter-Nanostrukturen und deren optischer Charakterisierung genutzt und Zinkoxid-Drähte dotiert. Diese wurden dann von den chinesischen Kollegen um Prof. Dr. Quan Li, eine ausgewiesene Expertin im Bereich Elektronenmikroskopie, auf ihre magnetischen Eigenschaften untersucht. "Wir haben festgestellt, dass die Kobalt-Dotierung den Nanodrähten intrinsische ferromagnetische Eigenschaften verleiht, während Eisen das nicht kann", kommentiert Prof. Li das überraschende Ergebnis. Weitere Untersuchungen sollen nun klären, worauf diese Unterschiede beruhen.

Die Originalpublikation "Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures" ist ab heute (19 Uhr) abrufbar unter: http://www.nature.com/doifinder/10.1038/nnano.2009.181

Kontakt:
Prof. Dr. Carsten Ronning
Institut für Festkörperphysik der Friedrich-Schiller-Universität Jena
Helmholtzweg 3, 07743 Jena
Tel.: 03641 / 947300
E-Mail: carsten.ronning@uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.nano.uni-jena.de/
http://www.uni-jena.de
http://www.nature.com/doifinder/10.1038/nnano.2009.181

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten