Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magnetisierung im Pikosekundentakt gesteuert

12.08.2013
Ein Terahertzlaser, der am Paul Scherrer Institut entwickelt worden ist, macht es möglich, die Magnetisierung eines Materials in Zeiträumen von Pikosekunden gezielt zu steuern.

In ihrem Experiment leuchteten die Forscher mit extrem kurzen Lichtpulsen aus dem Laser auf ein magnetisiertes Material. Das magnetische Feld des Lichtpulses konnte die magnetischen Momente aus ihrer Ruhelage auslenken und zwar so, dass sie mit einer geringen Verzögerung exakt dem Verlauf des Magnetfeldes des Lasers folgten. Der in dem Experiment verwendete Terahertzlaser ist einer der stärksten seiner Art weltweit.


Ein Puls aus einem Terahertzlaser (blau) steuert die Magnetisierung eines Materials: die Magnetisierung (rot – über den magnetooptischen Kerr-Effekt „MOKE“ gemessen) folgt mit geringer Verzögerung dem Magnetfeld des Laserpulses. In schwarz ist eine Computersimulation gezeigt.
Grafik: Paul Scherrer Institut

Daten werden heute grösstenteils magnetisch gespeichert – zum Beispiel in Festplatten. Dabei wird ein Bit, die kleinste Menge an Information, in der Magnetisierungsrichtung eines kleinen Bereichs des Speichermediums gespeichert. Man kann sich vorstellen, dass sich im Inneren eines solchen magnetischen Materials viele winzige Magnete – die magnetischen Momente – befinden. Will man die Information ändern, muss man die Richtung der Momente umkehren. Und um schnell grosse Datenmengen speichern zu können, benötigt man Verfahren, mit denen sich die Magnetisierungsrichtungen in einem Material schnell verändern lassen.

Magnetisierung im Takt des Terahertzlasers

Forscher des Paul Scherrer Instituts und der ETH Lausanne (EPFL) haben nun in Zusammenarbeit mit Kollegen der Université Pierre et Marie Curie in Paris einen neuen Ansatz studiert, mit dem sich die Magnetisierung eines Materials im Zeitbereich von Pikosekunden (0,000 000 000 001 Sekunde) gezielt steuern lässt. Dafür verwendeten sie einen neu entwickelten Laser, der sehr kurze Pulse aus Licht im Terahertz-Bereich erzeugte. Das Licht besteht wie jede elektromagnetische Strahlung aus einem elektrischen und einem magnetischen Feld, die sich beide sehr schnell verändern und so abwechselnd in die eine Richtung und in die andere weisen – im Licht eines Terahertz-Lasers wechselt die Richtung rund 1 000 000 000 000 mal in der Sekunde. Bestrahlt man mit diesem Licht ein magnetisiertes Material, dann kann das veränderliche Magnetfeld im Laserlicht die Richtung der Magnetisierung in dem Material verändern – ähnlich wie wenn man einen Magneten mal von der einen Seite an eine Kompassnadel hält und mal von der anderen. Nur geschieht hier diese Neuausrichtung innerhalb kürzester Zeit – in weniger als einer Picosekunde.

In ihrem Experiment nutzten die Forscher extrem kurze „Blitze“ aus Terahertz-Licht. Anders als das Licht herkömmlicher Laser heizt Terahertz-Licht die magnetische Probe nicht auf, was eine exakte Manipulation der Magnetisierung erst ermöglicht. Die verwendeten Terahertz-Blitze waren so kurz, dass das magnetische Feld gerade Zeit hatte, einmal in die eine und einmal in die andere Richtung zu zeigen. In dem belichteten Material wurden dadurch die magnetischen Momente ausgelenkt, erst in die eine Richtung und dann in die andere. Sie folgten dabei mit einer winzigen Verzögerung exakt dem Verlauf des Magnetfeldes in dem Lichtblitz.

Identische Pulse

Der Terahertz-Laser ist in der Lasergruppe des SwissFEL-Projekts am Paul Scherrer Institut entwickelt worden. Bis vor wenigen Jahren gab es kaum starke Terahertz-Laser – man sprach gar von der Terahertz-Lücke. „Wir nutzen für unseren Laser spezielle organische Kristalle, die die Frequenz von Laserlicht reduzieren“, erklärt Christoph Hauri, Leiter der Lasergruppe und Professor an der EPFL, die Idee hinter der Anlage. „Wenn wir mit einem starken Laser mit hoher Frequenz auf den Kristall einstrahlen, sendet er Strahlung im Terahertz-Bereich aus.“ Der Laser gehört zu den stärksten weltweit. Für die Experimente war noch eine Eigenschaft des Lasers wichtig: seine Phasenstabilität. Das heisst, dass man genau festlegen kann, wie die Veränderung der magnetischen Felder innerhalb des einzelnen Pulses verläuft und dass man diese Pulsform zuverlässig immer wieder reproduzieren kann. Die Entwicklung wurde dank einer erfolgreichen Zusammenarbeit mit dem Schweizer Industriepartner Rainbow Photonics AG möglich.

Der Laserblitz in dem präsentierten Experiment ist noch nicht intensiv genug, um die Magnetisierung vollständig umklappen zu können; man konnte nur die Dynamik, also die Bewegung der Magnetisierung beobachten. Das Experiment ist jedoch ein ausserordentlich wichtiges Teilziel, um das Konzept der ultraschnellen und exakten Manipulation von Magnetismus mit einem Laser zu demonstrieren. Hauri ist zuversichtlich, dass sich ein vollständiges Umklappen der Magnetisierung in naher Zukunft realisieren lässt. „Es gibt Tricks, mit denen man die Felder eines schwachen Lasers so weit verstärken kann, dass sie die Magnetisierung umschalten könnten.“ Zusätzlich müsste man dann auch eine besondere Pulsform wählen und einen Puls erzeugen, bei dem das magnetische Feld zuerst schwach in die eine Richtung zeigt, dann stark in die andere, und am Ende wieder schwach in die erste. Wenn nur der mittlere starke Teil des Pulses stark genug ist, um die Magnetisierung umzukehren, könnte man solche Pulse nutzen, um Materialien umzumagnetisieren. Solche exakt definierten Pulse sind nun am PSI verfügbar.

Teil des SwissFEL-Projekts

Am Paul Scherrer Institut ist die Entwicklung der Terahertz-Laser Teil des SwissFEL-Projekts, bei dem als neue Grossanlage des PSI der Röntgenlaser SwissFEL gebaut wird. Er wird Laserlicht im Röntgenbereich erzeugen und so viele Vorgänge in der Materie sichtbar machen, die heutigen Untersuchungsmethoden nicht zugänglich sind. Terahertz-Laser sollen dabei an zwei Stellen eingesetzt werden. Zum einen werden sie helfen, die Eigenschaften des Röntgenstrahls im laufenden Betrieb zu vermessen. Zum Anderen werden sie in Experimenten, in denen z.B. der Ablauf chemischer Reaktionen beobachtet wird, gewissermassen den Startschuss für die Reaktion geben, deren Zwischenzustand später mit dem Röntgenlaser bestimmt wird.

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt:
Prof. Dr. Christoph Hauri, Laser-Gruppe, SwissFEL-Projekt, Paul Scherrer Institut, 5232 Villigen PSI und Ecole Polytechnique Fédérale de Lausanne EPFL, Schweiz. Tel: +41 (0)56 310 4197, E-Mail: christoph.hauri@psi.ch; christoph.hauri@epfl.ch

Dr. Peter Derlet; Arbeitsgruppe Festkörpertheorie, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz. Tel: +41 (0)56 310 3164, E-Mail: peter.derlet@psi.ch

Prof. Dr. Jan Luning, Université Pierre et Marie Curie, 75005 Paris, Frankreich, E-Mail: jan.luning@upmc.fr

Originalveröffentlichung:
Offresonant magnetization dynamics phase-locked to an intense phase-stable THz transient
C. Vicario, C. Ruchert, F. Ardana-Lamas, P.M. Derlet, B. Tudu, J. Luning and C.P. Hauri

Nature Photonics, Advance Online Publication, 11 August 2013

Weitere Informationen:

http://www.psi.ch/media/ueberblick-swissfel
- SwissFEL - populärer Überblick
http://www.psi.ch/swissfel/swissfel
- Internetseite des SwissFEL-Projekts (englisch)

Paul Piwnicki | PSI
Weitere Informationen:
http://www.psi.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen