Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

IPP-Teststand ELISE erzielt Weltrekord

27.02.2015

Nach zwei Jahren Forschungsarbeit wurden im Teststand ELISE des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching bei München jetzt Weltrekord-Werte erreicht: Im erstmals gelungenen Ein-Stunden-Betrieb wurde ein gepulster Teilchenstrahl bislang unerreichter Qualität erzeugt: baumstammdick, homogen, zeitlich stabil und dabei neun Ampere stark. Mit ELISE, der weltweit größten Testanlage ihrer Art, wird die Heizung entwickelt, die das Plasma des internationalen Fusionstestreaktors ITER auf viele Millionen Grad bringen soll. Kernstück ist eine im IPP entwickelte neuartige Hochfrequenz-Ionenquelle, die den energiereichen Teilchenstrahl erzeugt.

Die von dem internationalen Testreaktor ITER (lat.: der Weg) gestellte Aufgabe ist anspruchsvoll: Um das ITER-Plasma auf viele Millionen Grad Celsius aufzuheizen, sollen zwei energiereiche Teilchenstrahlen je 16,5 Megawatt Heizleistung in das 800 Kubikmeter große Plasmavolumen pumpen. Ungefähr türgroß wird der Querschnitt dieser Teilchenstrahlen sein – und damit die heute genutzten Strahlen, die mit etwa tellergroßem Querschnitt und deutlich kleinerer Leistung auskommen, weit hinter sich lassen.


Per Wärmekamera aufgenommenes Bild des ELISE-Kalorimeters, das den Energieinhalt der erzeugten Teilchenstrahlen misst: Hier zeigt einer der Rekordstrahlen seine glühende Signatur.

Foto: IPP

Die Testanlage ITER, die zurzeit in weltweiter Zusammenarbeit in Cadarache in Südfrankreich aufgebaut wird, soll zeigen, dass ein Energie lieferndes Fusionsfeuer möglich ist. Ähnlich wie die Sonne soll ein künftiges Fusionskraftwerk aus der Verschmelzung von Atomkernen Energie gewinnen.

Der Brennstoff – ein Wasserstoffplasma – muss dazu berührungsfrei in einem Magnetfeldkäfig eingeschlossen und auf Zündtemperaturen über 100 Millionen Grad aufgeheizt werden. 500 Megawatt Fusionsleistung soll ITER erzeugen – zehnmal mehr, als zuvor zur Plasmaheizung aufgewendet wurde.

Entwicklungsarbeit im Teststand ELISE

Diese Plasmaheizung wird etwa zur Hälfte die so genannte „Neutralteilchen-Heizung“ übernehmen: Schnelle Wasserstoffatome, die durch den Magnetfeldkäfig hindurch in das Plasma hineingeschossen werden, geben über Stöße ihre Energie an die Plasmateilchen ab. So bringen heutige Heizungen, zum Beispiel an der IPP-Fusionsanlage ASDEX Upgrade in Garching, das Plasma per Knopfdruck auf ein Mehrfaches der Sonnentemperatur.

Die Großanlage ITER stellt jedoch erhöhte Anforderungen: Zum Beispiel müssen die Teilchenstrahlen viel dicker und die einzelnen Teilchen viel schneller sein als bisher, damit sie tief genug in das voluminöse Plasma eindringen können. Anstelle der bisher für die Produktion des Teilchenstrahls genutzten elektrisch positiv geladenen Ionen müssen daher negativ geladene Ionen verwendet werden, die extrem fragil sind. Die dazu im IPP entwickelte Hochfrequenz-Ionenquelle wurde als Prototyp in den ITER-Entwurf aufgenommen. Auch der Auftrag zur Anpassung an die ITER-Anforderungen ging Ende 2012 an das IPP.

Mit dem Teststand ELISE (Extraction from a Large Ion Source Experiment) wurde in den vergangenen zwei Jahren eine Quelle untersucht, die bereits halb so groß ist wie eine spätere ITER-Quelle. Sie erzeugt einen Teilchenstrahl von rund einem Quadratmeter Querschnittsfläche. Mit dem gewachsenen Format mussten die bisherigen technischen Lösungen für das Heizverfahren überarbeitet werden.

Schritt für Schritt ist ELISE damit in neue Größenordnungen vorgedrungen. Kürzlich gelangen nun einstündige Betriebspulse der Ionenquelle, in denen alle drei Minuten für 20 Sekunden ein stabiler und homogener, rund neun Ampere starker Ionenstrahl erzeugt werden konnte. Der Gasdruck in der Quelle und die Menge der zurückgehaltenen Elektronen entsprachen den ITER-Vorgaben – kurz: Weltrekord.

Hintergrund: Die technischen Details

Um Wasserstoffatome beschleunigen zu können, müssen sie zunächst als geladene Teilchen – als positiv oder negativ geladene Ionen – für elektrische Kräfte greifbar werden. Dies geschieht in der Ionenquelle: In Wasserstoffgas eingestrahlte Hochfrequenzwellen ionisieren und zerlegen einen Teil der Wasserstoffmoleküle. Das entstandene Plasma, eine Mischung neutraler Teilchen, negativer Elektronen sowie meist positiv geladener Ionen, strömt auf eine erste gitterförmige Elektrode. Durch die mehreren 100 Öffnungen dieses Gitters werden ebenso viele einzelne Ionenstrahlen aus dem Plasma herausgezogen. Nach der Beschleunigung durch zwei weitere Gitter verschmelzen die fingerdicken Einzelstrahlen schließlich zu einem breiten Gesamtstrahl, dessen Querschnitt bei ELISE rund einen Quadratmeter groß ist.

Sind die Oberflächen der Ionenquelle mit geeignetem Material belegt, mit Cäsium zum Beispiel, dann können die Wasserstoffatome dort Elektronen aufnehmen: So entstehen die für ITER benötigten negativ geladenen Wasserstoffionen. Um die gleichzeitig aus dem Plasma herausgezogenen, aber unerwünschten Elektronen loszuwerden, behindert ein Quermagnetfeld im Plasma ihren Flug zum ersten Gitter. Kleine, in das zweite Gitter eingebaute Permanent-Magnete lenken die Elektronen dann endgültig aus dem Strahl heraus. Die viel schwereren Ionen fliegen dagegen nahezu unbehindert weiter. Nicht nur dieses magnetische Innenleben macht die ELISE-Gitter zu technischen Meisterstücken: Hinzu kommt eine ausgefeilte Wasserkühlung, die trotz der hohen Wärmebelastung während der Heizpulse jede einzelne Öffnung auf hundertstel Millimeter relativ zu ihrem Partner im folgenden Gitter in Position hält.

Damit dies alles funktioniert, müssen zahlreiche Einzelgrößen – zum Beispiel die Hochfrequenzleistung, die Cäsiumkonzentration, die Wandtemperatur, die Gitterspannungen und das Magnetfeld zum Ablenken der Elektronen – genau aufeinander abgestimmt werden. Nur dann erhält man das gewünschte Ergebnis, einen stabilen und homogenen Strahl aus schnellen, negativ geladenen Wasserstoffionen. Damit die schnellen Teilchen später bei ITER ungehindert durch den Magnetfeldkäfig in das Plasma eindringen können, müssen sie zuvor wieder neutralisiert werden.

 Als schnelle Wasserstoffatome schießen sie schließlich in das Plasma hinein und geben ihre Energie an die Plasmateilchen ab.

Wie geht es weiter?

Inzwischen wurde die Ionenquelle erstmals seit Betriebsbeginn wieder geöffnet: Nach der Reinigung der Quelle will man dann mit erhöhter Leistung die vollen Zielwerte erreichen. Das System in Originalgröße wird anschließend das italienische Fusionsinstitut der ENEA in Padua untersuchen und dabei mit dem IPP zusammenarbeiten. Zur Vorbereitung wird hier in den nächsten zwei Jahren das italienische Team trainiert und zugleich die Entwicklung an ELISE weiterlaufen.

Weitere Informationen:

http://www.ipp.mpg.de/de/aktuelles/presse/pi/2014/02_15

Isabella Milch | Max-Planck-Institut für Plasmaphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Turbulente Bewegungen in der Atmosphäre eines fernen Sterns
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

6. Leichtbau-Tagung: Großserienfähiger Leichtbau im Automobil

23.08.2017 | Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Turbulente Bewegungen in der Atmosphäre eines fernen Sterns

23.08.2017 | Physik Astronomie

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungsnachrichten

Mit Algen Arthritis behandeln

23.08.2017 | Biowissenschaften Chemie