Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher visualisieren Wellen von Elektronen auf der Nanometerskala

27.02.2009
Göttinger Physiker nutzen dazu ein selbstentwickeltes Tieftemperatur-Rastertunnelmikroskop

Mit einem speziell entwickelten Rastertunnelmikroskop ist es Physikern aus Göttingen, Jülich und Halle gelungen, die durch "Defekte" hervorgerufenen Elektronenwellen in einem Festkörper im Nanometerbereich sichtbar zu machen.

Die Form der beobachteten Muster weist dabei einen Zusammenhang auf zu einer lange bekannten Materialeigenschaft, der Fermi-Fläche. Sie beschreibt die energetischen Zustände von Elektronen eines Metalls und ist für die Anwendung in neuen magnetischen Materialien von Bedeutung. Die Untersuchungen an der Universität Göttingen wurden am IV. Physikalischen Institut im Schwerpunkt Festkörper- und Materialphysik durchgeführt. Die Ergebnisse werden in der Zeitschrift "Science" vorgestellt.

Die Quantenmechanik beschreibt das Verhalten von Materie im atomaren Bereich und zeichnet sich wesentlich durch den Dualismus von Welle und Teilchen aus. Der Wellencharakter von Elektronen, der maßgeblich die physikalischen Eigenschaften eines Festkörpers bestimmt, ist experimentell jedoch nur schwer sichtbar zu machen. Anders als Wasserwellen, die sich auf der Oberfläche eines Sees nach einem Steinwurf kreisförmig ausbreiten, kann die Ausbreitung von Elektronen als sogenannte Huygensche Elementarwelle sehr komplexe Strukturen annehmen. Ihre Visualisierung auf der Nanometerskala gelang Dr. Alexander Weismann, Dr. Martin Wenderoth und Prof. Dr. Rainer G. Ulbrich zusammen mit Experten des Forschungszentrums Jülich und der Universität Halle-Wittenberg.

Als "Störungen" verwendeten die Forscher einzelne Kobaltatome, die mehrere Lagen unter einer atomar glatten Kupferoberfläche präpariert wurden. An diesen Verunreinigungen werden Elektronen gestreut. Dadurch entsteht ein stehendes Wellenmuster mit langer Reichweite, das mit Hilfe des Göttinger Tieftemperatur-Rastertunnelmikroskops an der Oberfläche sichtbar gemacht werden konnte. Dabei hat sich gezeigt, dass sich die Elektronenwellen in bevorzugte Richtungen ausbreiten. Dieses Phänomen, das als Elektronenfokussierung bezeichnet wird, kann nach Angaben von Dr. Weismann in weitergehenden Anwendungen ähnlich wie ein Echolot eingesetzt werden, um "vergrabene" Nanostrukturen abzubilden.

Originalveröffentlichung:
A. Weismann, M. Wenderoth, S. Lounis, P. Zahn, N. Quaas, R.G. Ulbrich, P.H. Dederichs, S. Blügel: Seeing the Fermi Surface in Real Space by Nanoscale Electron Focusing, Science 323 (2009)
Kontaktadresse:
Dr. Martin Wenderoth, Universität Göttingen
IV. Physikalisches Institut, Telefon (0551) 39-9367
e-mail: wenderoth@ph4.physik.uni-goettingen.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.ph4.physik.uni-goettingen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie