Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Europäische Kommission finanziert Entwicklungsstudie für einzigartiges Zukunftsobservatorium

16.10.2008
Die Europäische Kommission hat jetzt im Zuge des 7. Rahmenprogramms (FP7) drei Millionen Euro für eine Entwicklungsstudie zum Einstein-Teleskop (ET) – ein pan-europäisches Gravitationswellen-Observatorium – bereitgestellt und hat damit einen entscheidenden Schritt zur Beobachtung des Universums mit Gravitationswellen getan.

Sie unterstreicht mit dieser Förderung die Bedeutung der Gravitationswellenforschung für die Grundlagen- und die angewandte Forschung in Europa. „Mit dieser Entscheidung erkennt die Europäische Kommission die Erfolge der Gravitationswellenobservatorien GEO600 und Virgo an und ebnet den Weg zum ersten pan-europäischen Gravitationswellendetektor“, so Jacques Colas, Direktor des Europäischen Gravitationswellenobservatoriums (EGO) und Projektkoordinator der Entwicklungsstudie für das Einstein-Teleskop.

Das Einstein-Teleskop ist eines der sogenannten „Glorreichen Sieben“ in Europa und damit eines der Projekte, die vom ASPERA-Netzwerk für die zukünftige Entwicklung der Astroteilchenphysik in Europa empfohlen werden.

Gravitationswellen sind winzige Verzerrungen der Raumzeit, die schon von Albert Einstein vorhergesagt wurden. Sie direkt zu messen, ist eine der wichtigsten und grundlegendsten Herausforderungen der modernen Physik. Die direkte Beobachtung von Gravitationswellen wird völlig neue Einblicke in unser Universum ermöglichen, bis hin zu seiner Entstehung. Keine andere Technologie eröffnet diese Möglichkeiten.

Das Projekt Einstein-Teleskop (ET)
ET ist ein gemeinsames Projekt von acht europäischen Forschungsinstituten. Die Federführung hat EGO, ein italienisch-französisches Konsortium mit Sitz in der Nähe von Pisa (Italien) übernommen. Neben EGO sind beteiligt: Das Instituto Nazionale di Fisica Nucleare (INFN) aus Italien, das französische Centre National de la Recherche Scientifique (CNRS), das deutsche Albert-Einstein-Institut (AEI) an der Leibniz Universität Hannover, die Universitäten von Birmingham, Cardiff und Glasgow aus Großbritannien sowie die Niederländische Vrije Universiteit Amsterdam.

Die jetzt von der Europäischen Kommission bereitgestellten Mittel werden im Laufe der nächsten drei Jahre für eine Entwicklungsstudie für das Einstein-Teleskop verwendet. Diese Entwicklungsstudie ist ein wichtiger Schritt zur dritten Generation von Gravitationswellenobservatorien. Ziel der Studie ist, die Anforderungen an den Standort für ET, die benötigte Infrastruktur und nicht zuletzt das Gesamtbudget zu definieren.

Michele Punturo, Wissenschaftskoordinator der Studie sagt dazu: „Während die ersten beiden Detektorgenerationen das Feld für die Gravitationswellenastronomie bereits eröffnen werden, erwarten wir von der dritten Generation ein Observatorium, das hundert Mal empfindlicher ist als die gegenwärtigen Detektoren. Auf diese Weise vergrößert sich das beobachtbare Volumen des Universums um den Faktor eine Million.“ Zudem wird man das gesamte auf der Erde messbare Frequenzspektrum von 1 Hz bis 10 kHz erfassen können. „Dadurch wird ET eine neue Tür in der Gravitationswellenforschung aufstoßen“, so Punturo weiter. Dieses anspruchsvolle Ziel wird durch die Kombination aller gegenwärtig bekannten Technologien in einem einzigen Observatorium erreicht.

Harald Lück vom AEI an der Leibniz Universität Hannover, stellvertretender wissenschaftlicher Koordinator der Studie und Leiter der derzeitigen technologischen Upgrades des deutsch-britischen Detektors GEO600 ergänzt: “Das Einstein-Teleskop ist ein gemeinsamer Plan aller europäischen Gravitationswellenforscher. Er ist mit den Projekten unserer amerikanischen Partner gut synchronisiert, von den gegenwärtigen Detektoren über die Observatorien der zweiten Generation – die in den nächsten Jahren Daten erheben werden – bis hin zum Einstein-Teleskop.“

„Die Beobachtung von Gravitationswellen wird, zusätzlich zur Bestätigung der Allgemeinen Relativitätstheorie, andere weitreichende Konsequenzen haben: Zum ersten Mal werden wir einen Blick in die „Kinderstube“ unseres Universums werfen können“, so Harald Lück. Bisher kann der Himmel nur im elektromagnetischen Spektrum (z.B. Radiowellen, Röntgenstrahlung und sichtbares Licht) sowie durch die Analyse kosmischer Strahlen und Neutrinos beobachtet werden. Über die Anfangszeit unseres Universums vom Urknall bis 380.000 Jahre danach geben diese Methoden keinen Aufschluss, da das Universum erst dann durchlässig für elektromagnetische Strahlung wurde. Die verschiedenen Theorien über das frühe Universum konnten bisher also nicht experimentell verifiziert werden. Mit der direkten Beobachtung von Gravitationswellen wird es nun aller Voraussicht nach erstmals möglich sein, bis in die erste Trillionstel Sekunde nach dem Urknall zurück zu „lauschen“. Damit werden völlig neue Informationen über das Universum zugänglich sein - die Gravitationswellenastronomie wird der Wissenschaft also vollkommen neue Bereiche eröffnen.

Das globale Netzwerk
Die Gravitationswellenforschung ist eine globale Herausforderung, denn viele Quellen von Gravitationswellen können nur dann genau untersucht werden, wenn mehrere Interferometer an verschiedenen Orten gleichzeitig Daten aufnehmen. Daher arbeiten die amerikanischen und europäischen Wissenschaftlergruppen seit langem eng zusammen: im Bereich der Technologieentwicklung, bei der Entwicklung von Methoden der Numerischen Relativitätstheorie – also beispielsweise der Simulation von Gravitationswellensignalen – sowie bei der Entwicklung neuer Methoden und Werkzeuge für die Datenanalyse. Das Gemeinschaftsprojekt ET wird diese weltweite Kollaboration noch weiter stärken.
Status der jetzt laufenden Detektoren
Gegenwärtig arbeiten in Europa mehrere Gravitationswellendetektoren der ersten Generation: Das deutsch-britische Observatorium GEO600 wird, finanziert von STFC, MPG sowie dem Land Niedersachen, in der Nähe von Hannover betrieben, das französisch-italienisch-niederländische Virgo-Projekt ist in Cascina bei Pisa angesiedelt. Die Daten dieser Interferometer werden mit denen der drei amerikanischen LIGO-Interferometer zusammengeführt. Im gesamten Datenpool wird derzeit nach Gravitationswellensignalen aus astrophysikalischen Systemen gesucht.

Die Suchmethoden, mit denen die Datensätze nach Gravitationswellensignalen durchforstet werden und die in der Analyse verwendeten Algorithmen sind das Ergebnis vieler Jahre Forschungs- und Entwicklungsarbeit in Europa und den USA. Heute werden auf der internationalen Suche nach den ersten direkten Gravitationswellensignalen viele der Datenanalyseteams von europäischen Wissenschaftlern geleitet.

Im Laufe des nächsten Jahrzehnts werden alle interferometrischen Gravitationswellendetektoren zu Instrumenten der zweiten Generation aufgerüstet. Die Empfindlichkeit von Virgo und LIGO in den tieferen Frequenzen (bis etwa ein Kilohertz) wird durch den Einsatz von Technologien, die unter anderem in Europa entwickelt wurden, etwa verzehnfacht. GEO600 wird insbesondere in der Breitband-Beobachtung von hohen Frequenzen Pionierarbeit leisten, auch hier durch die Entwicklung und den Einsatz neuer Technologien. Sollten die derzeit arbeitenden Instrumente nicht die ersten direkten Nachweise von Gravitationswellen erbringen, wird dies mit großer Sicherheit von der zweiten Detektorgeneration erwartet.

ET passt gut in dieses Szenario. Nach dem Abschluss der Entwicklungsstudie und der folgenden technischen Vorbereitungsphase könnte voraussichtlich 2017 oder 2018 mit dem Bau begonnen werden, nachdem die Instrumente der zweiten Generation ihre Arbeit aufgenommen haben.

An der für die dritte Detektorengeneration erforderlichen Technologie wird in zahlreichen Ländern innerhalb und außerhalb Europas geforscht, auch in den USA und Japan. Alle Detektoren der dritten Generation, die irgendwann einmal gebaut werden, werden eng zusammenarbeiten müssen, genau wie die Detektoren der früheren Generationen.

Erklärung zu den Abkürzungen:
STFC: Science and Technology Facilities Council; http://www.scitech.ac.uk/
MPG: Max Planck Gesellschaft; http://www.mpg.de/english/portal/index.html
Weitere Information:
http://www.et-gw.eu/
http://geo600.aei.mpg.de/
http://www.virgo.infn.it/
http://www.aspera-eu.org/index.php?option=com_content&task=blogsection&id=10&Itemid=87
Fotos:
http://geo600.aei.mpg.de/documents/the-geo600-photo-album
http://wwwcascina.virgo.infn.it/Outreach/Outreach.html
Kontakt:
GEO600: Susanne Milde, milde@mildemarketing.de, Tel.: +49 331 583 93 55
EGO/Virgo: Carlo Bradaschia, carlo.bradaschia@pi.infn.it, Tel.: +39 339 67 22 355

Dr. Stefanie Beier | Leibniz Universität Hannover
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie