Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die dunklen Finger der Sonnenatmosphäre

03.12.2014

Max-Planck-Forscherinnen erklären bisher rätselhafte Strukturen bei solaren Ausbrüchen

Die Sonne brodelt. In ihrer Gashülle, der Korona, bilden sich dabei häufig rätselhafte fingerartige Plasmastrukturen. Nun ist es einem deutsch-amerikanischen Team unter Leitung des Max-Planck-Instituts für Sonnensystemforschung gelungen, diese filigranen Formen zu erklären.


Hexenkessel in der Sonnenatmosphäre: Das Bild stammt vom AIA-Instrument des amerikanischen SDO-Satelliten und zeigt die ultraviolette Strahlung eines Teils der Korona am 22. Oktober 2011. Es wurde bei einer Wellenlänge von 13,1 Nanometer (blau dargestellt) und 9,4 Nanometer (rot) aufgenommen. Die dunklen fingerartigen Strukturen der Rayleigh-Taylor-Instabilität im oberen Bildteil heben sich vor dem blauen Plasma klar ab.

© NASA / SDO / MPS


Strömendes Gas in der Korona: Hier ein typisches Resultat der neuen Simulationsrechnung auf Basis der Magnetohydrodynamik. Wie in den Beobachtungen, zeigen die dunklen fingerartigen Strukturen die Rayleigh-Taylor-Instabilität an.

© MPS

In ihrer neuen Theorie ziehen die Wissenschaftler ein lange bekanntes Naturphänomen heran, das in sehr unterschiedlichen Situationen beobachtbar ist – sowohl im fernen Kosmos als auch in der heimischen Teetasse.

In der solaren Korona läuft die Energieumwandlung auf Hochtouren. Dabei verwandeln sich magnetische und elektrische Energie in enorme Hitze, und die Temperaturen schnellen bis auf zehn Millionen Grad Celsius. In der Nähe von Sonnenflecken kann es dabei zu sogenannten eruptiven Flares kommen: Gasmassen lösen sich von der Sonnenoberfläche und werden hoch in die Korona geschleudert.

Dabei bilden sich seltsame langgestreckte Plasmastrukturen, die meist nur für einige Minuten im oberen Teil der Flares sichtbar sind. Seit ihrer Entdeckung vor rund 15 Jahren rätseln die Sonnenforscher, was hinter diesen dunklen Strukturen steckt; sie bilden einen deutlichen Kontrast zu dem hellen, im ultravioletten Licht leuchtenden Plasma, in das sie eingebettet sind.

Wegen ihrer Gestalt und der schlängelnden Bewegungen werden diese dunklen Strukturen im Forscherjargon manchmal „Kaulquappen“ genannt. „Wir tappten bisher bei deren Deutung buchstäblich im Dunkeln, denn alle Erklärungsversuche konnten die Beobachtungen nicht befriedigend erklären“, sagt Davina Innes vom Göttinger Max-Planck-Institut für Sonnensystemforschung.

Zusammen mit Kollegen hat sie Flare-Fotos des Solar Dynamics Observatory (SDO) der US-Raumfahrtbehörde NASA und der ebenfalls amerikanischen STEREO-Mission (Solar TErrestrial RElations Observatory) ausgewertet. Beide Sonden ermöglichen die Beobachtung der Sonne in mehreren Wellenlängen des ultravioletten Lichtes.

Die hochauflösenden Bilder stammen von Flare-Ausbrüchen in den Jahren 2011 und 2012 und bilden noch kleine Details mit weniger als 800 Kilometern Größe ab. Insbesondere die SDO-Bilder zeigen das solare Geschehen mehrmals pro Minute. Sie sind also gut geeignet, die meist kurzlebigen, rätselhaften koronalen „Kaulquappen“ zu untersuchen. „Es zeigte sich, dass diese Strukturen Instabilitäten sind, die beim Aufeinandertreffen verschieden dichter Plasmen entstehen“, sagt Innes.

In der zweiten Studie, die Max-Planck-Forscherin Lijia Guo leitete, wurden mit Computermodellen dieselben Prozesse simuliert. Diese dreidimensionalen MHD-Rechnungen – MHD steht für Magnetohydrodynamik – folgen einer Theorie, mit der Physiker elektrisch geladene Flüssigkeiten beschreiben; näherungsweise lässt sich auch das Sonnenplasma damit berechnen.

Die Ergebnisse der aufwendigen Rechnungen zeigen eine markante Übereinstimmung mit den Beobachtungen. Überraschend ist, dass die Strukturen, die den Sonnenphysikern jahrelang Kopfzerbrechen bereiteten, auf Basis der aktuellen Modellrechnungen mit einer alten Bekannten erklärt werden: „Wir konnten belegen, dass die Prozesse auf die Rayleigh-Taylor-Instabilität zurückgehen, einem fundamentalen Prozess der Strömungsphysik“, sagt Guo. Diese Instabilität tritt etwa zwischen zwei unterschiedlich dichten Flüssigkeiten auf, wenn diese gegeneinander beschleunigt werden.

Sogar in einer Teetasse, in die etwas Milch gegeben wird, kann es zu der Instabilität kommen. Denn die im Vergleich zum Tee schwerere Milch ist der irdischen Schwerebeschleunigung unterworfen. Die kurz sichtbaren, pilzförmigen Ausstülpungen an der Tee-Milch-Grenzfläche sind ein typisches Zeichen für die Instabilität. Diese tritt auch in strömenden Gasen auf. „In der Hülle explodierender Sterne zeigt sich die Rayleigh-Taylor-Instabilität ebenfalls. Die fingerartigen Strukturen in den Gasmassen des Krebsnebels, der bei einer Supernova-Explosion entstand, lassen sich so erklären“, sagt Lijia Guo.

Die beiden Studien der Max-Planck-Forscherinnen führen nun auch zu einem vertieften Verständnis der Vorgänge in der Korona. Neben der Rayleigh-Taylor-Instabilität geht es um einen energiereichen Prozess, bei dem das Magnetfeld in eine andere Konfiguration schnellt, die Rekonnexion. Ähnlich wie bei einem zu stark verdrillten Gummiband, das reißt, entlädt sich während der Flares schlagartig die im Magnetfeld gespeicherte Energie.

Die Rolle des Gummibandes spielen in der Korona die magnetischen Feldlinien. Beim abrupten Umgruppieren der Feldlinien entsteht ein Strahl aus dünnem Plasma: ein Jet. Dieser wird vom Ort der Rekonnexion zur Sonnenoberfläche hin beschleunigt. Weiter unten stößt der Jet auf dichteres Plasma. Am Kopf des Jets treffen also dichtes und dünnes Plasma aufeinander – die Rayleigh-Taylor-Instabilität nimmt ihren Lauf.

„Unsere Beobachtungen ergeben zum ersten Mal klare Belege für solche Rekonnexions-Jets, über die bisher nur theoretisiert wurde“, sagt Davina Innes. Die Resultate der beiden Forscherinnen dürften auch außerhalb der Community der Sonnenphysiker auf Interesse stoßen: „Rekonnexion, Rayleigh-Taylor-Instabilität, Jets – mit unseren Studien sind wir auf einige Phänomene gestoßen, von denen auch andere Felder der Physik profitieren können“, meint Lijia Guo.


Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462

E-Mail: krummheuer@mps.mpg.de


Dr. Davina Innes
Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-446

E-Mail: innes@mpf.mpg.de

Dr. Lijia Guo
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-434

E-Mail: guol@mps.mpg.de


Originalpublikationen
L.-J. Guo, Y.-M. Huang, A. Bhattacharjee, D. E. Innes

Rayleigh-Taylor type Instabilities in the Reconnection Exhaust Jet as a Mechanism for Supra-Arcade Downflows

Astrophysical Journal Letters, Vol. 769,Nr. 2 (1. Dezember 2014)

Quelle

D. E. Innes, L.-J. Guo, A. Bhattacharjee, Y.-M. Huang, D. Schmit

Observations of Supra-Arcade fans: Instabilities at the Head of Reconnection Jets

Astrophysical Journal, Vol. 796, Nr. 1 (20. November 2014)

Quelle

Dr. Birgit Krummheuer | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
http://www.mpg.de/8788831/Sonnenflares

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie