Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die dunklen Finger der Sonnenatmosphäre

03.12.2014

Max-Planck-Forscherinnen erklären bisher rätselhafte Strukturen bei solaren Ausbrüchen

Die Sonne brodelt. In ihrer Gashülle, der Korona, bilden sich dabei häufig rätselhafte fingerartige Plasmastrukturen. Nun ist es einem deutsch-amerikanischen Team unter Leitung des Max-Planck-Instituts für Sonnensystemforschung gelungen, diese filigranen Formen zu erklären.


Hexenkessel in der Sonnenatmosphäre: Das Bild stammt vom AIA-Instrument des amerikanischen SDO-Satelliten und zeigt die ultraviolette Strahlung eines Teils der Korona am 22. Oktober 2011. Es wurde bei einer Wellenlänge von 13,1 Nanometer (blau dargestellt) und 9,4 Nanometer (rot) aufgenommen. Die dunklen fingerartigen Strukturen der Rayleigh-Taylor-Instabilität im oberen Bildteil heben sich vor dem blauen Plasma klar ab.

© NASA / SDO / MPS


Strömendes Gas in der Korona: Hier ein typisches Resultat der neuen Simulationsrechnung auf Basis der Magnetohydrodynamik. Wie in den Beobachtungen, zeigen die dunklen fingerartigen Strukturen die Rayleigh-Taylor-Instabilität an.

© MPS

In ihrer neuen Theorie ziehen die Wissenschaftler ein lange bekanntes Naturphänomen heran, das in sehr unterschiedlichen Situationen beobachtbar ist – sowohl im fernen Kosmos als auch in der heimischen Teetasse.

In der solaren Korona läuft die Energieumwandlung auf Hochtouren. Dabei verwandeln sich magnetische und elektrische Energie in enorme Hitze, und die Temperaturen schnellen bis auf zehn Millionen Grad Celsius. In der Nähe von Sonnenflecken kann es dabei zu sogenannten eruptiven Flares kommen: Gasmassen lösen sich von der Sonnenoberfläche und werden hoch in die Korona geschleudert.

Dabei bilden sich seltsame langgestreckte Plasmastrukturen, die meist nur für einige Minuten im oberen Teil der Flares sichtbar sind. Seit ihrer Entdeckung vor rund 15 Jahren rätseln die Sonnenforscher, was hinter diesen dunklen Strukturen steckt; sie bilden einen deutlichen Kontrast zu dem hellen, im ultravioletten Licht leuchtenden Plasma, in das sie eingebettet sind.

Wegen ihrer Gestalt und der schlängelnden Bewegungen werden diese dunklen Strukturen im Forscherjargon manchmal „Kaulquappen“ genannt. „Wir tappten bisher bei deren Deutung buchstäblich im Dunkeln, denn alle Erklärungsversuche konnten die Beobachtungen nicht befriedigend erklären“, sagt Davina Innes vom Göttinger Max-Planck-Institut für Sonnensystemforschung.

Zusammen mit Kollegen hat sie Flare-Fotos des Solar Dynamics Observatory (SDO) der US-Raumfahrtbehörde NASA und der ebenfalls amerikanischen STEREO-Mission (Solar TErrestrial RElations Observatory) ausgewertet. Beide Sonden ermöglichen die Beobachtung der Sonne in mehreren Wellenlängen des ultravioletten Lichtes.

Die hochauflösenden Bilder stammen von Flare-Ausbrüchen in den Jahren 2011 und 2012 und bilden noch kleine Details mit weniger als 800 Kilometern Größe ab. Insbesondere die SDO-Bilder zeigen das solare Geschehen mehrmals pro Minute. Sie sind also gut geeignet, die meist kurzlebigen, rätselhaften koronalen „Kaulquappen“ zu untersuchen. „Es zeigte sich, dass diese Strukturen Instabilitäten sind, die beim Aufeinandertreffen verschieden dichter Plasmen entstehen“, sagt Innes.

In der zweiten Studie, die Max-Planck-Forscherin Lijia Guo leitete, wurden mit Computermodellen dieselben Prozesse simuliert. Diese dreidimensionalen MHD-Rechnungen – MHD steht für Magnetohydrodynamik – folgen einer Theorie, mit der Physiker elektrisch geladene Flüssigkeiten beschreiben; näherungsweise lässt sich auch das Sonnenplasma damit berechnen.

Die Ergebnisse der aufwendigen Rechnungen zeigen eine markante Übereinstimmung mit den Beobachtungen. Überraschend ist, dass die Strukturen, die den Sonnenphysikern jahrelang Kopfzerbrechen bereiteten, auf Basis der aktuellen Modellrechnungen mit einer alten Bekannten erklärt werden: „Wir konnten belegen, dass die Prozesse auf die Rayleigh-Taylor-Instabilität zurückgehen, einem fundamentalen Prozess der Strömungsphysik“, sagt Guo. Diese Instabilität tritt etwa zwischen zwei unterschiedlich dichten Flüssigkeiten auf, wenn diese gegeneinander beschleunigt werden.

Sogar in einer Teetasse, in die etwas Milch gegeben wird, kann es zu der Instabilität kommen. Denn die im Vergleich zum Tee schwerere Milch ist der irdischen Schwerebeschleunigung unterworfen. Die kurz sichtbaren, pilzförmigen Ausstülpungen an der Tee-Milch-Grenzfläche sind ein typisches Zeichen für die Instabilität. Diese tritt auch in strömenden Gasen auf. „In der Hülle explodierender Sterne zeigt sich die Rayleigh-Taylor-Instabilität ebenfalls. Die fingerartigen Strukturen in den Gasmassen des Krebsnebels, der bei einer Supernova-Explosion entstand, lassen sich so erklären“, sagt Lijia Guo.

Die beiden Studien der Max-Planck-Forscherinnen führen nun auch zu einem vertieften Verständnis der Vorgänge in der Korona. Neben der Rayleigh-Taylor-Instabilität geht es um einen energiereichen Prozess, bei dem das Magnetfeld in eine andere Konfiguration schnellt, die Rekonnexion. Ähnlich wie bei einem zu stark verdrillten Gummiband, das reißt, entlädt sich während der Flares schlagartig die im Magnetfeld gespeicherte Energie.

Die Rolle des Gummibandes spielen in der Korona die magnetischen Feldlinien. Beim abrupten Umgruppieren der Feldlinien entsteht ein Strahl aus dünnem Plasma: ein Jet. Dieser wird vom Ort der Rekonnexion zur Sonnenoberfläche hin beschleunigt. Weiter unten stößt der Jet auf dichteres Plasma. Am Kopf des Jets treffen also dichtes und dünnes Plasma aufeinander – die Rayleigh-Taylor-Instabilität nimmt ihren Lauf.

„Unsere Beobachtungen ergeben zum ersten Mal klare Belege für solche Rekonnexions-Jets, über die bisher nur theoretisiert wurde“, sagt Davina Innes. Die Resultate der beiden Forscherinnen dürften auch außerhalb der Community der Sonnenphysiker auf Interesse stoßen: „Rekonnexion, Rayleigh-Taylor-Instabilität, Jets – mit unseren Studien sind wir auf einige Phänomene gestoßen, von denen auch andere Felder der Physik profitieren können“, meint Lijia Guo.


Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462

E-Mail: krummheuer@mps.mpg.de


Dr. Davina Innes
Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-446

E-Mail: innes@mpf.mpg.de

Dr. Lijia Guo
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-434

E-Mail: guol@mps.mpg.de


Originalpublikationen
L.-J. Guo, Y.-M. Huang, A. Bhattacharjee, D. E. Innes

Rayleigh-Taylor type Instabilities in the Reconnection Exhaust Jet as a Mechanism for Supra-Arcade Downflows

Astrophysical Journal Letters, Vol. 769,Nr. 2 (1. Dezember 2014)

Quelle

D. E. Innes, L.-J. Guo, A. Bhattacharjee, Y.-M. Huang, D. Schmit

Observations of Supra-Arcade fans: Instabilities at the Head of Reconnection Jets

Astrophysical Journal, Vol. 796, Nr. 1 (20. November 2014)

Quelle

Dr. Birgit Krummheuer | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
http://www.mpg.de/8788831/Sonnenflares

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie