Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Supercoole Moleküle" - Neuartige Laserkühlung für komplexe Systeme

14.08.2007
Für den Nachweis des Bose-Einstein-Kondensats gab es 1997 den Nobelpreis. Denn in diesem Materiezustand befinden sich Atome am absoluten Temperatur-Nullpunkt, also Null Kelvin oder -237 Grad Celsius.

Dieser Durchbruch gelang dank der Kühlung durch Laserlicht, was mittlerweile als äußerst effektives Werkzeug für atomare Gase genutzt wird wie auch bei Experimenten, in denen kalte Atome unter anderem für Präzisionsmessungen verwendet werden. Doch bislang konnten nur Atome entsprechend abgekühlt werden.

Wie in der Fachzeitschrift "Physical Review Letters" berichtet, konnte nun ein internationales Forscherteam, dem auch Professor Regina de Vivie-Riedle vom Department Chemie und Biochemie der Ludwig-Maximilians-Universität (LMU) München angehört, die Technik erstmals auch direkt auf Moleküle übertragen. Auf diesem Weg können jetzt Einblicke in die innere Struktur von Molekülen sowie die Abläufe chemischer Reaktionen gewonnen werden. Denkbar ist auch, dass bei derart tiefen Temperaturen neuartige Interaktionen und Effekte auftreten.

Nicht nur Atome bei Tiefsttemperatur, auch ultrakalte Moleküle sind für die Forschung außerordentlich interessant. Doch bislang galt es als nahezu oder sogar ganz ausgeschlossen, diese komplexen Strukturen optisch zu kühlen. Denn Moleküle setzen sich aus mehreren Atomen zusammen und zeigen damit nicht nur eine äußere Bewegung, sondern auch innere Freiheitsgrade, etwa Schwingungen und Rotationen.

... mehr zu:
»Atom »Molekül

Und Kühlung bedeutet nichts anderes als die Verlangsamung von Bewegung. "Durch die inneren Freiheitsgrade entstehen unerwünschte Heizeffekte", so de Vivie-Riedle. Die lassen sich aber nicht ohne Weiteres verhindern. So konnten bislang nur einzelne Atome stark abgekühlt und dann nahe am Nullpunkt zu Molekülen verbunden werden. Schon diese ersten Erfolge erlaubten wichtige Einblicke in die innere Bindung von Molekülen.

Die neu entwickelte Methode erweitert jetzt das Spektrum. Denn damit können die Bewegung von Molekülen durch den Raum sowie deren Schwingungs- und Rotationsbewegung gleichzeitig gekühlt werden. Das Verfahren beruht auf der Kombination aus Laserlicht und einem optischen Resonator, der aus zwei hochwertigen Spiegeln besteht.

In deren Zwischenraum können alle Zustände eines Moleküls gezielt mit Hilfe der hochpräzisen Laser kontrolliert und so die Bewegungen auf ein Minimum reduziert werden. Die Ergebnisse basieren auf hochmodernen quantenchemischen Simulationen für ein Testmolekül, das so genannte OH-Molekül. "Sie zeigen, dass in Sekundenbruchteilen Schwingung und Rotation im OH-Molekül vollständig gekühlt werden können", so de Vivie-Riedle.

"Gleichzeitig erfolgt die Kühlung der externen Bewegung auf Temperaturen von wenigen Mikrokelvin. Unser Ansatz eröffnet neue Perspektiven für die Präparation und Kontrolle ultrakalter komplexer Systeme."

Publikation:
"Cavity cooling of internal molecular motion", Giovanna Morigi, Pepijn W.H. Pinkse, Markus Kowalewski, und Regina de Vivie-Riedle
Physical Review Letters, August 17, 2007
doi: 10.1103/PhysRevLett.99.073001
Ansprechpartner:
Professor Dr. Regina de Vivie-Riedle
Department Chemie und Biochemie der LMU
Tel.: 089 / 2180-77533
Fax: 089 / 2180-77133
E-Mail: rdvpc@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Atom Molekül

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie