Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf den Spuren des rätselhaften Top-Quarks

06.02.2007
An der Universität Bonn hat eine neue Emmy-Noether-Gruppe ihre Arbeit angetreten. Der Teilchenphysiker Dr. Markus Cristinziani und seine Mitarbeiter heften sich unter anderem auf die Spur des rätselhaften Top-Quarks, eines Elementarteilchens, das in den ersten Billionstel Sekunden nach dem Urknall existierte. Heute kann man es nur noch in gewaltigen Beschleunigern erzeugen.

Das Top-Quark gilt als Hoffnungsträger der Physiker: Seine Erforschung könnte unser Verständnis vom Aufbau der Materie tiefgreifend verändern. Dafür fließen in den nächsten fünf Jahren 1,2 Millionen Euro aus dem Säckel der Deutschen Forschungsgemeinschaft (DFG) an den Rhein.

Quarks sind die "Grundbausteine" der Protonen und Neutronen - das sind die Teilchen, aus denen sich die Atomkerne zusammensetzen. Protonen und Neutronen bestehen jeweils aus drei Quarks. Isolieren lassen sich diese jedoch nicht. Man kann Protonen aber zertrümmern, indem man sie mit extrem hoher Geschwindigkeit aufeinanderschießt. Unter den Bruchstücken, die dabei entstehen, sind auch Quarks, die es heute unter natürlichen Bedingungen gar nicht mehr gibt. Grund ist die bereits von Einstein formulierte Äquivalenz von Masse und Energie: Die Energie, die beim Crashtest im Beschleuniger frei wird, gebiert gewissermaßen neue Teilchen.

Das Top-Quark ist ein solcher Neuzugang im physikalischen Teilchenzoo. Es entsteht bei energiereichen Kollisionen, die nur in sehr großen Beschleunigern erreicht werden können. 1995 wurde es in Chicago zum ersten Mal nachgewiesen. Weniger als 1.000 Mal konnten Physiker das rätselhafte Teilchen seitdem beobachten. Entsprechend wenig ist bis heute über das Top-Quark bekannt. Was man weiß, ist, dass es für ein Elementarteilchen extrem schwer ist: Es wiegt fast soviel wie ein Gold-Atom. "Und eben dieses Gewicht ist es, das das Top-Quark für uns so interessant macht", erklärt Dr. Markus Cristinziani. Da Quarks wie entgegengesetzt gepolte Magnete normalerweise direkt nach ihrer Geburt zu zusammengesetzten Teilchen "verkleben", geben sie nur sehr wenig über sich als Individuen Preis. Anders das Top-Quark: Es ist aufgrund seines Gewichts so instabil, dass es direkt zerfällt. "Die Zerfallsprodukte lassen sich aber mit physikalischen Methoden analysieren", sagt der Leiter der Emmy-Noether-Gruppe. "Dabei lernen wir viel über das Top-Quark, aber auch über den Aufbau der Materie insgesamt."

... mehr zu:
»Physik »Teilchen »Top-Quark

Und wozu das Ganze? "Physiker erklären sich den Aufbau der Materie mit einer Theorie, dem so genannten Standardmodell der Teilchenphysik", erklärt Cristinziani. "Diese Theorie hat aber Lücken: Die Vorhersagen, die sich von ihr ableiten lassen, decken sich mitunter nicht mit den Beobachtungen, die man in jüngster Zeit gemacht hat." So zeigen Messungen, dass unser Universum entgegen aller Prognosen immer schneller auseinanderstrebt. Als Triebkraft vermutet die Physikergemeinde eine rätselhafte "dunkle Energie". Worum es sich dabei handeln könnte, erklärt das Standardmodell jedoch nicht. "Das Top-Quark dient uns als Tür, durch die wir tiefer in die Geheimnisse der Materie eindringen können", sagt der Teilchenphysiker.

Schon während seiner Doktorarbeit hat der 34-jährige Deutsch-Italiener einige Zeit beim Europäischen Labor für Teilchenphysik CERN in Genf gearbeitet; danach forschte er drei Jahre an der renommierten Universität im US-amerikanischen Stanford. Jetzt kehrt der Vater zweier Kinder zu seiner alten Wirkungsstätte zurück: Am CERN geht nämlich in einigen Monaten der weltgrößte Teilchenbeschleuniger in Betrieb. Dort werden Cristinziani und seine Mitarbeiter ihre Protonen-Crashtests durchführen.

Damit hängt auch ein zweiter Schwerpunkt ihrer Arbeit zusammen: Die Entwicklung ultraschneller Detektoren, mit denen sich die Produkte der Kollisionen nachweisen lassen. Pro Sekunde kommt es im Beschleuniger zu 40 Millionen Zusammenstößen; dabei entstehen jeweils über tausend Teilchen. In der Arbeitsgruppe von Professor Dr. Norbert Wermes vom Physikalischen Institut wurde dazu eigens ein Detektor entwickelt, der die Reaktionsprodukte auf einen hundertstel Millimeter genau orten kann - und das gleich vierzigmillionenmal pro Sekunde. Wie der Lichtsensor einer Digitalkamera besteht er aus haarfeinen rechteckigen Zellen, die dicht nebeneinander angeordnet sind - den sogenannten Pixeln. Durchquert ein Teilchen einen Pixel, sendet dieser Ort, Zeit und Signalgröße an den Rand der Elektronikchips, wo die Messwerte in schnelle Lichtsignale umgewandelt und durch optische Fasern zum Computer geschickt werden. In mehreren Ebenen zylinderförmig um den Entstehungsort der Reaktion angeordnet, liefert der Pixel-Detektor so die Punkte einer Teilchenspur, mit deren Hilfe die Forscher rekonstruieren können, was genau sich beim Crash im Beschleuniger zugetragen hat.

Zehn Jahre Entwicklungsarbeit stecken in dem Pixeldetektor, der am Ende des Jahres seinen Betrieb aufnimmt. Dann sind die Bonner Physiker aber bereits bei den Vorarbeiten für einen Nachfolger. "Die Strahlendosis, die bei den Kollisionen entsteht, ist so hoch, dass wir Schäden am Detektor erwarten", erklärt Cristinziani. "Wir versuchen daher, ein robusteres Modul zu entwickeln - dafür werden wir härteres Silizium oder vielleicht Diamant verwenden."

Kontakt:
Dr. Markus Cristinziani
Physikalisches Institut der Uni Bonn
Telefon: 0228/73-5762
E-Mail: cristinz@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://mc-eng.physik.uni-bonn.de/

Weitere Berichte zu: Physik Teilchen Top-Quark

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise