Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf den Spuren des rätselhaften Top-Quarks

06.02.2007
An der Universität Bonn hat eine neue Emmy-Noether-Gruppe ihre Arbeit angetreten. Der Teilchenphysiker Dr. Markus Cristinziani und seine Mitarbeiter heften sich unter anderem auf die Spur des rätselhaften Top-Quarks, eines Elementarteilchens, das in den ersten Billionstel Sekunden nach dem Urknall existierte. Heute kann man es nur noch in gewaltigen Beschleunigern erzeugen.

Das Top-Quark gilt als Hoffnungsträger der Physiker: Seine Erforschung könnte unser Verständnis vom Aufbau der Materie tiefgreifend verändern. Dafür fließen in den nächsten fünf Jahren 1,2 Millionen Euro aus dem Säckel der Deutschen Forschungsgemeinschaft (DFG) an den Rhein.

Quarks sind die "Grundbausteine" der Protonen und Neutronen - das sind die Teilchen, aus denen sich die Atomkerne zusammensetzen. Protonen und Neutronen bestehen jeweils aus drei Quarks. Isolieren lassen sich diese jedoch nicht. Man kann Protonen aber zertrümmern, indem man sie mit extrem hoher Geschwindigkeit aufeinanderschießt. Unter den Bruchstücken, die dabei entstehen, sind auch Quarks, die es heute unter natürlichen Bedingungen gar nicht mehr gibt. Grund ist die bereits von Einstein formulierte Äquivalenz von Masse und Energie: Die Energie, die beim Crashtest im Beschleuniger frei wird, gebiert gewissermaßen neue Teilchen.

Das Top-Quark ist ein solcher Neuzugang im physikalischen Teilchenzoo. Es entsteht bei energiereichen Kollisionen, die nur in sehr großen Beschleunigern erreicht werden können. 1995 wurde es in Chicago zum ersten Mal nachgewiesen. Weniger als 1.000 Mal konnten Physiker das rätselhafte Teilchen seitdem beobachten. Entsprechend wenig ist bis heute über das Top-Quark bekannt. Was man weiß, ist, dass es für ein Elementarteilchen extrem schwer ist: Es wiegt fast soviel wie ein Gold-Atom. "Und eben dieses Gewicht ist es, das das Top-Quark für uns so interessant macht", erklärt Dr. Markus Cristinziani. Da Quarks wie entgegengesetzt gepolte Magnete normalerweise direkt nach ihrer Geburt zu zusammengesetzten Teilchen "verkleben", geben sie nur sehr wenig über sich als Individuen Preis. Anders das Top-Quark: Es ist aufgrund seines Gewichts so instabil, dass es direkt zerfällt. "Die Zerfallsprodukte lassen sich aber mit physikalischen Methoden analysieren", sagt der Leiter der Emmy-Noether-Gruppe. "Dabei lernen wir viel über das Top-Quark, aber auch über den Aufbau der Materie insgesamt."

... mehr zu:
»Physik »Teilchen »Top-Quark

Und wozu das Ganze? "Physiker erklären sich den Aufbau der Materie mit einer Theorie, dem so genannten Standardmodell der Teilchenphysik", erklärt Cristinziani. "Diese Theorie hat aber Lücken: Die Vorhersagen, die sich von ihr ableiten lassen, decken sich mitunter nicht mit den Beobachtungen, die man in jüngster Zeit gemacht hat." So zeigen Messungen, dass unser Universum entgegen aller Prognosen immer schneller auseinanderstrebt. Als Triebkraft vermutet die Physikergemeinde eine rätselhafte "dunkle Energie". Worum es sich dabei handeln könnte, erklärt das Standardmodell jedoch nicht. "Das Top-Quark dient uns als Tür, durch die wir tiefer in die Geheimnisse der Materie eindringen können", sagt der Teilchenphysiker.

Schon während seiner Doktorarbeit hat der 34-jährige Deutsch-Italiener einige Zeit beim Europäischen Labor für Teilchenphysik CERN in Genf gearbeitet; danach forschte er drei Jahre an der renommierten Universität im US-amerikanischen Stanford. Jetzt kehrt der Vater zweier Kinder zu seiner alten Wirkungsstätte zurück: Am CERN geht nämlich in einigen Monaten der weltgrößte Teilchenbeschleuniger in Betrieb. Dort werden Cristinziani und seine Mitarbeiter ihre Protonen-Crashtests durchführen.

Damit hängt auch ein zweiter Schwerpunkt ihrer Arbeit zusammen: Die Entwicklung ultraschneller Detektoren, mit denen sich die Produkte der Kollisionen nachweisen lassen. Pro Sekunde kommt es im Beschleuniger zu 40 Millionen Zusammenstößen; dabei entstehen jeweils über tausend Teilchen. In der Arbeitsgruppe von Professor Dr. Norbert Wermes vom Physikalischen Institut wurde dazu eigens ein Detektor entwickelt, der die Reaktionsprodukte auf einen hundertstel Millimeter genau orten kann - und das gleich vierzigmillionenmal pro Sekunde. Wie der Lichtsensor einer Digitalkamera besteht er aus haarfeinen rechteckigen Zellen, die dicht nebeneinander angeordnet sind - den sogenannten Pixeln. Durchquert ein Teilchen einen Pixel, sendet dieser Ort, Zeit und Signalgröße an den Rand der Elektronikchips, wo die Messwerte in schnelle Lichtsignale umgewandelt und durch optische Fasern zum Computer geschickt werden. In mehreren Ebenen zylinderförmig um den Entstehungsort der Reaktion angeordnet, liefert der Pixel-Detektor so die Punkte einer Teilchenspur, mit deren Hilfe die Forscher rekonstruieren können, was genau sich beim Crash im Beschleuniger zugetragen hat.

Zehn Jahre Entwicklungsarbeit stecken in dem Pixeldetektor, der am Ende des Jahres seinen Betrieb aufnimmt. Dann sind die Bonner Physiker aber bereits bei den Vorarbeiten für einen Nachfolger. "Die Strahlendosis, die bei den Kollisionen entsteht, ist so hoch, dass wir Schäden am Detektor erwarten", erklärt Cristinziani. "Wir versuchen daher, ein robusteres Modul zu entwickeln - dafür werden wir härteres Silizium oder vielleicht Diamant verwenden."

Kontakt:
Dr. Markus Cristinziani
Physikalisches Institut der Uni Bonn
Telefon: 0228/73-5762
E-Mail: cristinz@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://mc-eng.physik.uni-bonn.de/

Weitere Berichte zu: Physik Teilchen Top-Quark

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie