Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neptuns Dreizack

19.05.2006


In der aktuellen Mai-Ausgabe von "Nature" geben Astronomen der Universität Genf und Astrophysiker der Universität Bern die Entdeckung eines neuen extrasolaren Planetensystems bekannt. Das neu entdeckte System besteht aus drei Planeten, die zwischen 10 und 18 mal so schwer sind wie die Erde.


Modell der drei Planeten im neu entdeckten System, das 40 Lichtjahre von der Erde entfernt ist. Bild: Willy Benz, Universität Bern



Die Entdeckung der Genfer Astronomen weist Eigenschaften auf, das es von bisherigen Planeten-Entdeckungen unterscheidet: "Neptuns Dreizack", so der Übername des neuen Systems, gleicht am meisten unserem eigenen Sonnensystem. Dies zeigen die Analysen der Astrophysiker um Prof. Willy Benz vom Physikalischen Institut der Universität Bern. Die neu entdeckten Planeten bestehen gemäss deren Modellrechnungen vor allem aus Stein und Eis und nicht aus Gas, wie es bei den meisten anderen extrasolaren Planeten der Fall ist.



Diese Entdeckung stellt einen neuen Höhepunkt in der Suche nach extrasolaren Planeten dar, die an der Universität Genf vor 10 Jahren gestartet wurde und seit 5 Jahren in Zusammenarbeit mit der Universität Bern geschieht. Im Lauf der letzten 11 Jahre wurden mehr als 180 Exoplaneten entdeckt, die um Sterne kreisen, die unserer eigenen Sonne gleichen. Rund die Hälfte der Entdeckungen gelang den Astronomen der Universität Genf.

Drei neptunartige Planeten

"Neptuns Dreizack" stellt jedoch ein Novum dar, da die Eigenschaften des neuen Planetensystems denen unseres eigenen Sonnensystems ähnlich sind. In diesem Fall wird ein Stern - er ist ein wenig leichter als die Sonne - von drei Planeten umkreist, die 10, 12 und 18 mal so schwer wie die Erde sind. Damit sind sie zwar immer noch deutlich massiver als die Erde selbst, aber zugleich auch sehr klein im Vergleich mit zuvor entdeckten Exoplaneten. "Neptuns Dreizack" besitzt aber noch weitere interessante Eigenschaften: Der NASA-Satellit "Spitzer" hatte zuvor ein Übermass an Infrarot- Strahlung festgestellt, die von diesem System ausgeht und einem extrasolaren Asteroidengürtel zugeschrieben wird, wo Kollisionen zwischen Asteroiden kleinen, mikrometergrossen Silikat-Staub produzieren, der dann vom Stern aufgeheizt wird.

Das Resultat einer nationalen und internationalen Zusammenarbeit

Die Analyse und Interpretation einer solchen Entdeckung erfordert genaue Kenntnisse über die Prozesse, die bei der Bildung und Evolution von Planeten eine Rolle spielen. Dies ist nur durch eine intensive Zusammenarbeit verschiedener Institute möglich. Innerhalb dieser Zusammenarbeit sind die Berner Astrophysiker und Spezialisten für die Bildung von Planeten, Yann Alibert und der Rest des Teams um Prof. Willy Benz, für die theoretische Erklärung der beobachteten Eigenschaften zuständig. Nachdem sie mehr als 20’000 mögliche Formationsszenarien für das Planetensystem mit ihrem Modell durchgerechnet haben, zogen die Berner Forscher durch Vergleiche mit den beobachteten Bahnen und Massen Schlüsse über den Aufbau der drei Planeten: Die zwei inneren Planeten bestehen hauptsächlich aus einem Kern aus Stein und sind von einer relativ kleinen Gashülle aus Wasserstoff und Helium umgeben. Im Gegensatz dazu besteht der äusserste Planet rund zur Hälfte aus Gas, unter dem sich ein Kern aus Wasser und Stein befindet. Da das Wasser bei hoher Temperatur unter grossem Druck steht, befindet es sich im superkritischen Aggregatszustand ? ein Zustand, der in unserem Alltag unbekannt ist.

Auf internationaler Ebene haben Spezialisten aus Paris und Portugal die dynamische Stabilität des Planetensystems untersucht und dadurch die Position des Asteroidengürtels genauer bestimmen können. Insgesamt hat die Entdeckung von "Neptuns Dreizack" intensive Forschungstätigkeit von 14 Wissenschaftlern an 8 europäischen Instituten ausgelöst. Eine Tätigkeit, die wegen der aussergewöhnlichen Eigenschaften des Systems noch lange andauern wird.

Zukunftsperspektiven

Obwohl die Planetologie bezüglich der Planeten unseres eigenen Sonnensystems schon beachtliche Resultate erzielen konnte, steckt sie beim Studium extrasolarer Planeten noch in den Kinderschuhen. Neue Beobachtungsinstrumente, die in wenigen Jahren verfügbar sein werden und erstmals direkte Bilder der Exoplaneten liefern können, sind deshalb hoch willkommen. Mit neuen Beobachtungsmethoden wird es dann auch möglich sein, wirklich erdähnliche Planeten zu entdecken, für die die aktuellen Techniken noch nicht ausreichen. Die Ziele der Forscher aber bleiben unverändert: Die Suche und Analyse extrasolarer Planeten ist ein wichtiges und sehr aktives Gebiet der boden- und weltraumgestützten Astronomie, denn nur sie ermöglicht ein vertieftes Verständnis des Ursprungs unseres Sonnensystems und der Erde, und nur sie wird auf längere Sicht die Frage nach extraterrestrischem Leben beantworten können.

Nathalie Matter | idw
Weitere Informationen:
http://www.kommunikation.unibe.ch/medien/mitteilungen/news/2006/neptun.html
http://www.kommunikation.unibe.ch/medien/mitteilungen/news/2006/neptun/nature060518.pdf

Weitere Berichte zu: Astrophysik Exoplanet Planet Planetensystem Sonnensystem

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Die „dunkle“ Seite der Spin-Physik
16.01.2018 | Technische Universität Berlin

nachricht Blick ins Universum
15.01.2018 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Wie Metallstrukturen effektiv helfen, Knochen zu heilen

Forscher schaffen neue Generation von Knochenimplantaten

Wissenschaftler am Julius Wolff Institut, dem Berlin-Brandenburger Centrum für Regenerative Therapien und dem Centrum für Muskuloskeletale Chirurgie der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

Tagung „Elektronikkühlung - Wärmemanagement“ vom 06. - 07.03.2018 in Essen

11.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal mit neuem Onlineauftritt - Lösungskompetenz für alle IT-Szenarien

16.01.2018 | Unternehmensmeldung

Die „dunkle“ Seite der Spin-Physik

16.01.2018 | Physik Astronomie

Wetteranomalien verstärken Meereisschwund

16.01.2018 | Geowissenschaften