Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantencomputing mit einzelnen Photonen

17.05.2006


Nano-Optiker stellen zwei Qubits dar, kodiert in ihrer Polarisation und ihrer räumlichen Mode


Abbildung 1
HU-Nano-Optik


Abbildung 2
HU-Nano-Optik



Quantencomputer basieren auf den Gesetzen der Quantenphysik. Sie ermöglichen es, komplexe Probleme zu lösen, für die die Rechenleistung herkömmlicher klassischer Computer nicht ausreicht. Statt mit Bits, die den Wert Null oder Eins haben können, rechnen Quantencomputer mit Quantenbits oder kurz Qubits. Qubits kann man im Prinzip in allen physikalischen Systemen realisieren, die sich durch zwei Zustände vollständig beschreiben lassen. Dies können zwei mögliche elektronische Zustände in einem Atom (angeregt oder abgeregt), zwei Richtungen eines quantisierten Stromflusses in einem Supraleiter (Uhrzeigersinn oder Gegenuhrzeigersinn) oder der Eigendrehimpuls bzw. Spin von Atomkernen (Rotationsachse nach oben oder nach unten) sein. Das Besondere am Quantencomputer ist, dass es auch so genannte Überlagerungen der Zustände Null und Eins gibt.

... mehr zu:
»Photon »Quantencomputer »Qubit


Eine einfache Realisierung eines Qubits gelingt mittels der Kodierung in den beiden Schwingungsrichtungen (z.B senkrecht oder waagerecht) eines einzelnen Licht-"Teilchen" oder Photons. Ein weiteres Qubit kann für dasselbe Photon durch seine räumliche Mode repräsentiert sein (das Photon läuft nach links oder nach rechts). Der besondere Vorteil für die Demonstration von Quantencomputing mit Photonen ist, dass sich sehr einfach logische Gatter, das sind die Grundbausteine eines Computers, durch passive optische Elemente wie Strahlteiler, Verzögerungs- oder Polarisationsplatten realisieren lassen.

Mitarbeitern der Arbeitsgruppe Nano-Optik von Oliver Benson am Institut für Physik der Humboldt-Universität gelang es nun, eine Lichtquelle, die einzelne Photonen auf Kommando emittiert, zu benutzen, um zwei Qubits darzustellen, kodiert in ihrer Polarisation und ihrer räumlichen Mode. Mit Hilfe verschiedener optischer Komponenten konnte dann ein Quantenalgorithmus - der Deutsch-Josza-Algorithmus - erfolgreich demonstriert werden.

Das Problem, das mit dem Deutsch-Josza-Algorithmus gelöst werden kann, hat im Falle von zwei Qubits eine einfache Analogie: Man stelle sich zwei Arten von Münzen vor: echte, die auf der einen Seite Kopf und auf der anderen Seite Zahl anzeigen, und falsche, die auf beiden Seiten Kopf oder auf beiden Seiten Zahl tragen. Wie kann man nun herausfinden, ob eine Münze, die flach auf einem Tisch liegt, echt oder falsch ist? In der klassischen Welt kann man trivialer Weise die Münze umdrehen und sich die Rückseite betrachten. Auf jeden Fall aber muss man die Münze zweimal betrachten: einmal von vorne und einmal von hinten. Das entsprechende mathematische Problem ist die Aufgabe herauszufinden, ob eine unbekannte Funktion konstant ist oder ausgewogen. Im ersten Fall ergibt sie immer den Wert Null oder immer den Wert Eins, im zweiten Fall ergibt sie genauso oft Null wie Eins. Ein Quantencomputer löst dieses Problem erstaunlicherweise mit nur einem einzigen Funktionaufruf, d.h. ein Quantencomputer muss sich die Münze aus dem obigen Beispiel nur einmal betrachten.

Das Schema (Abb. 1) zeigt den experimentellen Aufbau des Berliner Experiments. Einzelne Photonen werden in ein Interferometer geschickt, das aus verschiedenen Komponenten, wie Strahlteilern (mit BS bezeichnet) und Spiegeln, besteht. Eine beliebige konstante oder ausgewogene Funktion kann formal durch Hinein- oder Herausklappen von optischen Verzögerungsplatten (mit ?/2 bezeichnet) dargestellt werden. Der Quantenalgorithmus wird ausgeführt, indem man genau ein Photon in das Interferometer schickt. Das Ergebnis der Rechnung ist ein einzelner Klick in einem der beiden Detektoren 1 oder 0 am Interferometerausgang (durch Halbkreise dargestellt). Wie erläutert, muss man den Algorithmus nur ein einziges Mal ausführen, um zu wissen, welche Funktion vorab eingestellt wurde.

In Abbildung 2 ist das Resultat vieler Messungen zusammengefasst. Dabei ist die Wahrscheinlichkeit, einen Klick an einem der beiden Detektoren zu messen (rote, bzw. blaue Punkte) für die insgesamt vier möglichen Funktionen (zwei konstante und zwei ausgewogene) dargestellt.

Nach dieser ersten erfolgreichen Demonstration ist es nun das nächste Ziel der Berliner Forscher eine Quelle herzustellen, die nicht nur ein einziges, sondern eine beliebige Anzahl von identischen Photonen auf Kommando erzeugt. Mit solchen Quellen wäre es möglich, wesentlich komplexere Quantenalgorithmen zu demonstrieren. Erste Schritte in diese Richtung befinden sich bereits in Vorbereitung.

Originalveröffentlichung: Deutsch-Jozsa Algorithm using Triggered Single Photons from a Single Quantum Dot, M. Scholz, T. Aichele, S. Ramelow, O. Benson, Physical Review Letters 96, 180501 (2006)

Informationen Prof. Dr. Oliver Benson, Institut für Physik
Telefon [030] 2093 4711,- 7927
e-mail oliver.benson@physik.hu-berlin.de

Heike Zappe | idw
Weitere Informationen:
http://www.hu-berlin.de/
http://nano.physik.hu-berlin.de

Weitere Berichte zu: Photon Quantencomputer Qubit

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen