Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie flicht man Nanozöpfe?

11.10.2005


Drei in der Computersimulation beobachtete Schnappschüsse eines Bündels, das sich aus 20 Filamenten zusammensetzt: (a) Loses Bündel bei einer Vernetzerkonzentration, die nur leicht über dem Schwellwert liegt; (b) und (c) zeigen zwei verschiedene Konformationen ein und desselben Bündels, segregiert in drei kleinere Subbündel, beziehungsweise in einer kompakten, etwa zylindrischen Form. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Max-Planck-Wissenschaftler identifizieren Parameter, die die Bildung von Filamentbündeln kontrollieren


Biomimetische Systeme aus steifen Polymeren oder Filamenten und quervernetzenden Molekülen sind in der Lage, komplexe Filamentnetzwerke und -bündel auszubilden. Diese Filamentbündel kann man sich als geflochtene Zöpfe auf der Nanoskala vorstellen, deren Eigenschaften im wesentlichen von der Anzahl der verflochtenen Filamente bestimmt werden. Wissenschaftler am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam haben jetzt gezeigt, dass sich wegen der thermischen Bewegung der Filamente Bündel erst dann bilden, wenn die Konzentration der vernetzenden Moleküle einen bestimmten Schwellwert überschreitet. Dieser hängt von der Anzahl der Filamente ab, bleibt aber auch für Bündel aus zahlreichen Filamenten endlich. Verringert man die Konzentration der Quervernetzer, separieren sich die Bündel in kleinere Subbündel oder lösen sich in einem abrupten Phasenübergang komplett auf (Physical Review Letters 95, 038102).

Biologische Zellen sind mechanisch stabil, da sie Aktinfilamente und Mikrotubuli besitzen, die Netzwerke und Bündel ausbilden. Diese Architekturen werden von quervernetzenden Proteinen, die zwei klebende Enden besitzen und damit verschiedene Filamente aneinander binden können, zusammengehalten und kontrolliert. Will man die für diese Prozesse verantwortlichen Kräfte verstehen, um beispielsweise die mechanischen Eigenschaften der Architekturen zu optimieren, muss man biomimetische Modellsysteme studieren, die allein aus Filamenten und quervernetzenden Proteinen bestehen. Ein wichtiges Beispiel dafür ist die Vernetzung mehrerer Filamente zu dicken Bündeln oder "Nanozöpfen", die steifer sind und eine größere externe Last tragen können als ein einzelnes Filament.


Doch die Vernetzung von Filamenten wird durch ihre thermische Bewegungen gestört. Die Potsdamer Max-Planck-Wissenschaftler haben jetzt gezeigt, dass die thermische Bewegung den Aufbau eines Filamentbündels verhindert, sofern die Konzentration der Vernetzer einen bestimmten Schwellwert nicht überschreitet. Dieser Schwellwert hängt von der Filamentsteifigkeit, der Bindungsenergie der quervernetzenden Moleküle und der Temperatur ab. Des weiteren nimmt der Grenzwert ab, wenn die Anzahl N der Filamente innerhalb des Bündels zunimmt, bleibt aber endlich im Limes großer N.

Die Abbildung zeigt Schnappschüsse von einzelnen Filamentbündeln, wie sie in der Computersimulation beobachtet werden. In Abb. (a) ist ein loses Bündel bei einer Vernetzerkonzentration zu erkennen, die nur leicht über dem Schwellwert liegt. Wie in Abb. (b) zu sehen, zeigen die Simulationen, dass diese Bündel sich oft auftrennen in kleinere Subbündel, die typischerweise fünf Filamente enthalten. Dabei unterscheidet sich die Bündelmorphologie sehr stark von der Gleichgewichtsform, wie sie in Abb. (c) abgebildet ist. Welche der beiden Morphologien angenommen wird, hängt von der anfänglichen Anordnung der Filamente und von der Kinetik des Vernetzungsprozesses ab.

Biomimetische Systeme, die aus Lösungen von Aktinfilamenten und quervernetzenden Proteinen bestehen, wurden bereits von mehreren Arbeitsgruppen experimentell untersucht. Diese experimentellen Daten stehen im Einklang mit den Ergebnissen der neu entwickelten Theorie, die auf dem Wechselspiel von molekularer Vernetzung und thermischer Bewegung beruht. Besonders interessant ist der experimentelle Nachweis einer Schwellwertkonzentration von Quervernetzern, oberhalb derer die Bündelung von Filamenten abrupt einsetzt. Systematische Studien der Abhängigkeit von der Filamentanzahl stehen jedoch noch aus.

Abgesehen von ihrer Aufgabe als strukturelle Elemente können Filamentbündel auch enorme Druckkräfte erzeugen. Diese entstehen durch das gerichtete Wachstum der Filamente, wenn weitere molekulare Bausteine an den Filamentenden angebaut werden. Eine wichtige Herausforderung besteht nun darin zu beschreiben, auf welche Weise diese Druckkräfte von der Anzahl der Filamente im Bündel abhängen. Diese wissenschaftliche Thematik wird derzeit innerhalb des Europäischen Netzwerks über "Aktive Biomimetische Systeme" intensiv verfolgt.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Filament Filamentbündel Molekül Schwellwert

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik