Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie flicht man Nanozöpfe?

11.10.2005


Drei in der Computersimulation beobachtete Schnappschüsse eines Bündels, das sich aus 20 Filamenten zusammensetzt: (a) Loses Bündel bei einer Vernetzerkonzentration, die nur leicht über dem Schwellwert liegt; (b) und (c) zeigen zwei verschiedene Konformationen ein und desselben Bündels, segregiert in drei kleinere Subbündel, beziehungsweise in einer kompakten, etwa zylindrischen Form. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung


Max-Planck-Wissenschaftler identifizieren Parameter, die die Bildung von Filamentbündeln kontrollieren


Biomimetische Systeme aus steifen Polymeren oder Filamenten und quervernetzenden Molekülen sind in der Lage, komplexe Filamentnetzwerke und -bündel auszubilden. Diese Filamentbündel kann man sich als geflochtene Zöpfe auf der Nanoskala vorstellen, deren Eigenschaften im wesentlichen von der Anzahl der verflochtenen Filamente bestimmt werden. Wissenschaftler am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam haben jetzt gezeigt, dass sich wegen der thermischen Bewegung der Filamente Bündel erst dann bilden, wenn die Konzentration der vernetzenden Moleküle einen bestimmten Schwellwert überschreitet. Dieser hängt von der Anzahl der Filamente ab, bleibt aber auch für Bündel aus zahlreichen Filamenten endlich. Verringert man die Konzentration der Quervernetzer, separieren sich die Bündel in kleinere Subbündel oder lösen sich in einem abrupten Phasenübergang komplett auf (Physical Review Letters 95, 038102).

Biologische Zellen sind mechanisch stabil, da sie Aktinfilamente und Mikrotubuli besitzen, die Netzwerke und Bündel ausbilden. Diese Architekturen werden von quervernetzenden Proteinen, die zwei klebende Enden besitzen und damit verschiedene Filamente aneinander binden können, zusammengehalten und kontrolliert. Will man die für diese Prozesse verantwortlichen Kräfte verstehen, um beispielsweise die mechanischen Eigenschaften der Architekturen zu optimieren, muss man biomimetische Modellsysteme studieren, die allein aus Filamenten und quervernetzenden Proteinen bestehen. Ein wichtiges Beispiel dafür ist die Vernetzung mehrerer Filamente zu dicken Bündeln oder "Nanozöpfen", die steifer sind und eine größere externe Last tragen können als ein einzelnes Filament.


Doch die Vernetzung von Filamenten wird durch ihre thermische Bewegungen gestört. Die Potsdamer Max-Planck-Wissenschaftler haben jetzt gezeigt, dass die thermische Bewegung den Aufbau eines Filamentbündels verhindert, sofern die Konzentration der Vernetzer einen bestimmten Schwellwert nicht überschreitet. Dieser Schwellwert hängt von der Filamentsteifigkeit, der Bindungsenergie der quervernetzenden Moleküle und der Temperatur ab. Des weiteren nimmt der Grenzwert ab, wenn die Anzahl N der Filamente innerhalb des Bündels zunimmt, bleibt aber endlich im Limes großer N.

Die Abbildung zeigt Schnappschüsse von einzelnen Filamentbündeln, wie sie in der Computersimulation beobachtet werden. In Abb. (a) ist ein loses Bündel bei einer Vernetzerkonzentration zu erkennen, die nur leicht über dem Schwellwert liegt. Wie in Abb. (b) zu sehen, zeigen die Simulationen, dass diese Bündel sich oft auftrennen in kleinere Subbündel, die typischerweise fünf Filamente enthalten. Dabei unterscheidet sich die Bündelmorphologie sehr stark von der Gleichgewichtsform, wie sie in Abb. (c) abgebildet ist. Welche der beiden Morphologien angenommen wird, hängt von der anfänglichen Anordnung der Filamente und von der Kinetik des Vernetzungsprozesses ab.

Biomimetische Systeme, die aus Lösungen von Aktinfilamenten und quervernetzenden Proteinen bestehen, wurden bereits von mehreren Arbeitsgruppen experimentell untersucht. Diese experimentellen Daten stehen im Einklang mit den Ergebnissen der neu entwickelten Theorie, die auf dem Wechselspiel von molekularer Vernetzung und thermischer Bewegung beruht. Besonders interessant ist der experimentelle Nachweis einer Schwellwertkonzentration von Quervernetzern, oberhalb derer die Bündelung von Filamenten abrupt einsetzt. Systematische Studien der Abhängigkeit von der Filamentanzahl stehen jedoch noch aus.

Abgesehen von ihrer Aufgabe als strukturelle Elemente können Filamentbündel auch enorme Druckkräfte erzeugen. Diese entstehen durch das gerichtete Wachstum der Filamente, wenn weitere molekulare Bausteine an den Filamentenden angebaut werden. Eine wichtige Herausforderung besteht nun darin zu beschreiben, auf welche Weise diese Druckkräfte von der Anzahl der Filamente im Bündel abhängen. Diese wissenschaftliche Thematik wird derzeit innerhalb des Europäischen Netzwerks über "Aktive Biomimetische Systeme" intensiv verfolgt.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Filament Filamentbündel Molekül Schwellwert

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise