Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einsteins "Automatischer Beton-Volks-Kühlschrank"

11.10.2005


Historische Skizze von Einsteins Kühlschrank


Nachbau von Einsteins Kühlschrank mit Wolfgang Engels (links) und Dr. Falk Riess. Foto:Peter Duddek


Oldenburger Physiker bauten die Erfindung des Genies nach


Ein von Albert Einstein (1879-1955) und seinem ungarischen Kollegen Leo Szilard (1898-1964) entwickelter "Automatischer Beton-Volks-Kühlschrank" wurde von dem vor dem Examen stehenden Physikstudenten Wolfgang Engels zusammen mit den Mechanikern der Werkstätten der Universität Oldenburg nachgebaut. Engels gehört der Arbeitsgruppe "Didaktik und Geschichte der Physik" am Institut für Physik an, die unter der Leitung von Hochschuldozent Dr. Falk Rieß seit Jahren historische Experimente mit Hilfe originalgetreuer Nachbauten durchführt.

Zu Recht wird immer wieder darauf hingewiesen, dass Einstein nicht nur der wahrscheinlich bedeutendste theoretische Physiker des 20. Jahrhunderts war, sondern auch ein erfinderischer Ingenieursgeist. Er sagte selbst: "Der Urquell aller technischen Errungenschaften ist die göttliche Neugier und der Spieltrieb des bastelnden und grübelnden Forschers und nicht minder die konstruktive Phantasie des technischen Erfinders" (1930) und: "Ich habe nie aufgehört, mich mit technischen Dingen zu beschäftigen. Dies war auch für das wissenschaftliche Forschen vorteilhaft" (1930). Weitere Beispiele für sein technisches Interesse sind seine Tätigkeit im Berner Patentamt (1902-1909), seine Experimente zusammen mit Johannes Wander de Haas (1878-1960), seine Gutachten in Patentstreitigkeiten (z.B. zum Kreiselkompass) und seine eigenen Patentanmeldungen.


Die Geschichte des "Einstein-Kühlschranks" beginnt mit einer nicht genau belegbaren Anekdote. Danach las der junge ungarische Privatdozent der Physik Leo Szilard, der sich kurz zuvor in Berlin habilitiert hatte, in einer Zeitung von dem tödlichen Unfall einer ganzen Familie, die einem undicht gewordenen Kühlschrank zum Opfer gefallen war.

Die Idee, einen neuartigen, unfallsicheren Kühlschrank ohne bewegte Teile - also ohne Pumpe, die leckschlagen konnte - zu erfinden, brachte ihn mit Albert Einstein zusammen, der ihn als Teilnehmer des Physikalischen Kolloquiums an der Universität kannte. Im Rahmen dieser Zusammenarbeit entstanden zwischen 1926 und 1928 dreizehn gemeinsame Patentanmeldungen, von denen acht erteilt wurden.

Das neue Kühlaggregat sollte folgende Ansprüche erfüllen: ohne Elektrizitätsversorgung auskommen, aus Sicherheitsgründen keine bewegten Teile enthalten und nicht mit einem geschlossenen Kühlmittelkreislauf arbeiten. Die giftige Kühlflüssigkeit sollte vielmehr fortwährend unschädlich für die Bewohner aus dem Wohnbereich entfernt werden. Dafür erdachten Einstein und Szilard zwei mögliche Bau- und Funktionsprinzipien: eine elektromagnetische Pumpe für flüssiges Metall und das Verdampfer/Absorptionsprinzip mit Wasserstrahlpumpe und Alkohol als Kühlflüssigkeit. Beide Prinzipien wurden bis zu Prototypen, im Falle des "Automatischen Beton-Volks-Kühlschranks" der Firma Citogel (Hamburg) sogar bis zu Fertigungsmustern vorangetrieben, die auf der Leipziger Messe 1928 und 1929 ausgestellt wurden.

Bei dem in Oldenburg nachgebauten Kühlschrank erzeugt eine Wasserstrahlpumpe einen Unterdruck im Verdampfer, der eine Absenkung des Siedepunkts der Kühlflüssigkeit bewirkt. Dieser kann bei Verwendung von Aceton - je nach Wirksamkeit der Pumpe - bei bis zu -20°C liegen. Durch Verdunstung sinkt die Temperatur solange, bis der Dampfdruck der Flüssigkeit sich mit dem Umgebungsdruck im Gleichgewicht befindet. Zur Erhöhung der Pumpleistung ist im Gehäuse der Pumpe ein Absorber untergebracht, in dessen Inneren ein feiner Wassernebel das Kühlmittel aus dem Dampf auswäscht, das dann in gelöster Form mit dem Wasser abgeführt wird.

Der Nachbau mit einem Nutzinhalt von ca. 80 Litern wurde auf der nicht sehr zuverlässigen Grundlage der Patentschriften und einer Anzeige mit Bild der Herstellerfirma Citogel angefertigt. Er ist in Beton-Kork-Bauweise ausgeführt und wiegt gut 350 Kilogramm. Mit Aceton als Kühlmittel wird bei einem Verbrauch von 0,1 l/Stunde eine Temperatur des Verdampfers von 0°C erreicht. Die Wasserstrahlpumpe als mechanische Antriebsquelle des Kühlvorgangs benötigt zum Betrieb je nach Kühlleistung bis zu 300 l Wasser/Stunde.

Bei dem Nachbau traten einige Schwierigkeiten auf, wie z. B. bei der Umsetzung des physikalischen Kühlprinzips in ein funktionierendes technisches Gerät und vor allem bei der präzisen Gestaltung des Verdampfers, des Absorbers und der Pumpe. Alle Probleme wurden in enger Zusammenarbeit der beteiligten Wissenschaftler der Arbeitsgruppe "Didaktik und Geschichte der Physik" und den Mitarbeitern der mechanischen Werkstätten der Universität erfolgreich gelöst.

Kontakt:

HD Dr. Falk Riess,
Tel.: 0441/798-3540,
E-Mail: falk.riess@uni-oldenburg.de,

Wolfgang Engels
Tel.: 0441/798-3537,
E-Mail: wolfgang.engels@mail.uni-oldenburg.de

Gerhard Harms | idw
Weitere Informationen:
http://www.uni-oldenburg.de/histodid/index.htm

Weitere Berichte zu: Beton-Volks-Kühlschrank Einstein Physik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie