Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Schritt zu einer Atomkernuhr

15.07.2005


Garchinger Wissenschaftler haben eine Laserquelle im extrem ultravioletten Licht (XUV) erschlossen, die außergewöhnliche Anwendungen verspricht


Vakuumkammer, die das nichtlineare Medium für die Laserexperimente, einen Strahl aus Xenon-Atomen, enthält. Der helle weiße Punkt hinter dem Sichtfenster in der Mitte des Bildes wird durch Xenon-Atome hervorgerufen, die durch das infrarote Laserlicht - symbolisiert durch die rote Fläche, da normalerweise unsichtbar ist - ionisiert wurden. Die erzeugte XUV-Strahlung tritt durch das Rohr aus, das im Bild nach rechts unten führt. Die Abmessungen dieser Kammer sind etwa 2 x 1 x 1 Zentimeter. Bild: Max-Planck-Institut für Quantenoptik


Spektrum der erzeugten harmonischen XUV-Strahlung. In der Grobansicht wird jede Farbe erzeugt, angefangen bei der nahinfraroten Laser-Strahlung bis zu einer so genannten Abschneidefrequenz, die meist im XUV- oder weichen Röntgenbereich liegt. Bei genauerem Hinsehen erkennt man, dass dieses breite Strahlungsspektrum schmalere Spitzen bei Frequenzen aufweist, die ein ungeradzahliges Vielfaches der nahinfraroten Laserfrequenz sind. Wird eine solche Harmonische noch genauer unter die Lupe genommen und aufgefächert, findet man einen Frequenzkamm aus nahezu unendlich scharfen äquidistanten Linien, die als Lineal im Frequenzraum dienen können. Bild: Max-Planck-Institut für Quantenoptik



Erst kürzlich ist es mit so genannten modengekoppelten Lasern, die eine beliebig lange Kette aus extrem kurzen Lichtpulsen emittieren, gelungen, die Schwingungen von sichtbarem Licht erstmals direkt zu zählen. Das eröffnete neue Perspektiven beispielsweise für hochgenaue Atomuhren. Das Frequenzspektrum eines solchen Lasers besteht aus einer langen gleichmäßigen Reihe von schmalen Linien, die man mit den Zinken eines Kamms vergleichen kann. Christoph Gohle und seine Kollegen in der Gruppe von Theodor W. Hänsch am Max-Planck-Institut für Quantenoptik in Garching haben jetzt eine Lichtquelle vorgestellt, die einen solchen "Frequenzkamm" im extrem ultravioletten Spektralbereich (XUV) zur Verfügung stellt. Der Abstand zwischen den Linien dieses Kamms ist so groß, dass jede Linie für neue Präzisionsmessungen in dem bisher noch nicht erschlossenen Frequenzbereich benutzt werden kann. Die neue Lichtquelle ist nahezu punktförmig und eröffnet neue Möglichkeiten bei Anwendungen mit ultraviolettem Licht, von der Holographie, Mikroskopie und Nanolithographie bis hin zu Röntgen-Atomuhren (Nature, 14. Juli 2005).

... mehr zu:
»Atomkernuhr »Frequenz »Konversion »Laser »XUV


Optische Frequenzkämme, wie sie in den Labors am Max-Planck-Institut für Quantenoptik in den vergangenen Jahren in Garching entwickelt wurden, haben die optische Frequenzmessung revolutioniert. Sie ermöglichen es erstmals, zuverlässig arbeitende Atomuhren zu konstruieren, die als Taktgeber einen atomaren Übergang mit optischer Frequenz einsetzen. Damit rückt eine gegenüber den besten Cäsium-Atomuhren tausend Mal präzisere Zeitbestimmung in Reichweite.

Je schneller der Taktgeber einer Uhr schwingt, desto feiner ist die Unterteilung der Zeit und um so genauer kann eine Uhr arbeiten. In klassischen Pendeluhren schwingt der Taktgeber etwa ein Mal pro Sekunde, in Quarz-Armbanduhren etwa eine Million Mal, in modernen Cäsium-Atomuhren, die Grundlage der SI-Einheit Sekunde sind, zehn Milliarden Mal und in optischen Atomuhren noch hunderttausend Mal schneller. Eine weitere Steigerung der Taktgeberfrequenz wäre möglich, wenn man statt der Schwingung der Elektronenhülle die Schwingung eines Atomkerns nutzen könnte. Doch das scheiterte bisher, weil es nicht gelang, solche Schwingungen mit ausreichender Präzision zu detektieren und zu zählen.

Bei der "nichtlinearen Konversion" von elektromagnetischen Wellen entsteht in einem geeigneten Medium Licht mit einer Frequenz, die ein ganzzahliges Vielfaches der Frequenz des ursprünglichen Lichtes beträgt. Dies ermöglicht im Prinzip die Erzeugung von XUV- oder gar weicher Röntgenstrahlung aus sichtbarem oder nahinfrarotem Licht. Doch damit diese Konversion effizient abläuft, braucht man eine sehr hohe Lichtleistung, die durch Konzentration der mittlere Leistung aus einem Laser in wenige extrem kurze Lichtblitze (meistens einige Tausend pro Sekunde) erreicht wird. Auf diese Weise kann die Leistung in einem Lichtblitz auf einige hundert Milliarden Watt gesteigert werden, ohne die im Mittel abgestrahlte Lichtleistung von einigen Watt zu erhöhen. Doch auch bei so hoher Leistung in einem Lichtblitz ist die Konversion in XUV-Licht ineffizient. Denn höchstens ein Hunderttausendstel der gesamten Leistung wird konvertiert und ein Großteil der eingestrahlten Leistung geht verloren.

Mit der jetzt von den Max-Planck-Wissenschaftlern entwickelten Laserquelle ist man dem Ziel der präzisen Freuquenzmessung im XUV (und evtl. einer Atomkernuhr) ein gutes Stück näher gekommen. Sie haben die auftretenden Schwierigkeiten mit einem Trick umgangen: Sie speichern die Pulse aus einem Laser mit einer hohen Wiederholrate zwischen zwei oder mehr Spiegeln derart, dass sich jeder neu eintreffende Puls zu dem in der Spiegelanordnung bereits umlaufenden Puls addiert und auf diese Weise die Leistung des umlaufenden Pulses viele hundert Mal größer werden kann. Wird das nichtlineare Medium zur Frequenzkonversion - ein Stahl aus Xenon-Atomen - nun innerhalb dieser Anordnung platziert, so kann die Konversion ins XUV bei einer sehr hohen Wiederholfrequenz von über 100 Millionen Pulsen pro Sekunde stattfinden. Zudem geht das Licht, das nach einem Durchgang durch das Medium nicht konvertiert wurde, nicht verloren, sondern wird weiter zwischen den Spiegeln gespeichert und kann somit zu weiteren Durchläufen durch das Medium beitragen.

Eine solche XUV-Quelle ist nicht nur für die Grundlagenforschung und die hochpräzise Spektroskopie von Interesse. Die Einfachheit und Kompaktheit der Quelle und die hohe Wiederholrate stellen auch Anwendungen in der Halbleiterherstellung oder der hochdichten holographischen Datenspeicherung in Aussicht.

Ein ähnliches Ergebnis wurde kürzlich auch von der Gruppe von Jun Ye am JILA in Boulder, USA, publiziert (Physical Review Letters, Vol. 94, Nr. 193201).

Christoph Gohle | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de
http://www.mpg.de

Weitere Berichte zu: Atomkernuhr Frequenz Konversion Laser XUV

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics