Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Schritt zu einer Atomkernuhr

15.07.2005


Garchinger Wissenschaftler haben eine Laserquelle im extrem ultravioletten Licht (XUV) erschlossen, die außergewöhnliche Anwendungen verspricht


Vakuumkammer, die das nichtlineare Medium für die Laserexperimente, einen Strahl aus Xenon-Atomen, enthält. Der helle weiße Punkt hinter dem Sichtfenster in der Mitte des Bildes wird durch Xenon-Atome hervorgerufen, die durch das infrarote Laserlicht - symbolisiert durch die rote Fläche, da normalerweise unsichtbar ist - ionisiert wurden. Die erzeugte XUV-Strahlung tritt durch das Rohr aus, das im Bild nach rechts unten führt. Die Abmessungen dieser Kammer sind etwa 2 x 1 x 1 Zentimeter. Bild: Max-Planck-Institut für Quantenoptik


Spektrum der erzeugten harmonischen XUV-Strahlung. In der Grobansicht wird jede Farbe erzeugt, angefangen bei der nahinfraroten Laser-Strahlung bis zu einer so genannten Abschneidefrequenz, die meist im XUV- oder weichen Röntgenbereich liegt. Bei genauerem Hinsehen erkennt man, dass dieses breite Strahlungsspektrum schmalere Spitzen bei Frequenzen aufweist, die ein ungeradzahliges Vielfaches der nahinfraroten Laserfrequenz sind. Wird eine solche Harmonische noch genauer unter die Lupe genommen und aufgefächert, findet man einen Frequenzkamm aus nahezu unendlich scharfen äquidistanten Linien, die als Lineal im Frequenzraum dienen können. Bild: Max-Planck-Institut für Quantenoptik



Erst kürzlich ist es mit so genannten modengekoppelten Lasern, die eine beliebig lange Kette aus extrem kurzen Lichtpulsen emittieren, gelungen, die Schwingungen von sichtbarem Licht erstmals direkt zu zählen. Das eröffnete neue Perspektiven beispielsweise für hochgenaue Atomuhren. Das Frequenzspektrum eines solchen Lasers besteht aus einer langen gleichmäßigen Reihe von schmalen Linien, die man mit den Zinken eines Kamms vergleichen kann. Christoph Gohle und seine Kollegen in der Gruppe von Theodor W. Hänsch am Max-Planck-Institut für Quantenoptik in Garching haben jetzt eine Lichtquelle vorgestellt, die einen solchen "Frequenzkamm" im extrem ultravioletten Spektralbereich (XUV) zur Verfügung stellt. Der Abstand zwischen den Linien dieses Kamms ist so groß, dass jede Linie für neue Präzisionsmessungen in dem bisher noch nicht erschlossenen Frequenzbereich benutzt werden kann. Die neue Lichtquelle ist nahezu punktförmig und eröffnet neue Möglichkeiten bei Anwendungen mit ultraviolettem Licht, von der Holographie, Mikroskopie und Nanolithographie bis hin zu Röntgen-Atomuhren (Nature, 14. Juli 2005).

... mehr zu:
»Atomkernuhr »Frequenz »Konversion »Laser »XUV


Optische Frequenzkämme, wie sie in den Labors am Max-Planck-Institut für Quantenoptik in den vergangenen Jahren in Garching entwickelt wurden, haben die optische Frequenzmessung revolutioniert. Sie ermöglichen es erstmals, zuverlässig arbeitende Atomuhren zu konstruieren, die als Taktgeber einen atomaren Übergang mit optischer Frequenz einsetzen. Damit rückt eine gegenüber den besten Cäsium-Atomuhren tausend Mal präzisere Zeitbestimmung in Reichweite.

Je schneller der Taktgeber einer Uhr schwingt, desto feiner ist die Unterteilung der Zeit und um so genauer kann eine Uhr arbeiten. In klassischen Pendeluhren schwingt der Taktgeber etwa ein Mal pro Sekunde, in Quarz-Armbanduhren etwa eine Million Mal, in modernen Cäsium-Atomuhren, die Grundlage der SI-Einheit Sekunde sind, zehn Milliarden Mal und in optischen Atomuhren noch hunderttausend Mal schneller. Eine weitere Steigerung der Taktgeberfrequenz wäre möglich, wenn man statt der Schwingung der Elektronenhülle die Schwingung eines Atomkerns nutzen könnte. Doch das scheiterte bisher, weil es nicht gelang, solche Schwingungen mit ausreichender Präzision zu detektieren und zu zählen.

Bei der "nichtlinearen Konversion" von elektromagnetischen Wellen entsteht in einem geeigneten Medium Licht mit einer Frequenz, die ein ganzzahliges Vielfaches der Frequenz des ursprünglichen Lichtes beträgt. Dies ermöglicht im Prinzip die Erzeugung von XUV- oder gar weicher Röntgenstrahlung aus sichtbarem oder nahinfrarotem Licht. Doch damit diese Konversion effizient abläuft, braucht man eine sehr hohe Lichtleistung, die durch Konzentration der mittlere Leistung aus einem Laser in wenige extrem kurze Lichtblitze (meistens einige Tausend pro Sekunde) erreicht wird. Auf diese Weise kann die Leistung in einem Lichtblitz auf einige hundert Milliarden Watt gesteigert werden, ohne die im Mittel abgestrahlte Lichtleistung von einigen Watt zu erhöhen. Doch auch bei so hoher Leistung in einem Lichtblitz ist die Konversion in XUV-Licht ineffizient. Denn höchstens ein Hunderttausendstel der gesamten Leistung wird konvertiert und ein Großteil der eingestrahlten Leistung geht verloren.

Mit der jetzt von den Max-Planck-Wissenschaftlern entwickelten Laserquelle ist man dem Ziel der präzisen Freuquenzmessung im XUV (und evtl. einer Atomkernuhr) ein gutes Stück näher gekommen. Sie haben die auftretenden Schwierigkeiten mit einem Trick umgangen: Sie speichern die Pulse aus einem Laser mit einer hohen Wiederholrate zwischen zwei oder mehr Spiegeln derart, dass sich jeder neu eintreffende Puls zu dem in der Spiegelanordnung bereits umlaufenden Puls addiert und auf diese Weise die Leistung des umlaufenden Pulses viele hundert Mal größer werden kann. Wird das nichtlineare Medium zur Frequenzkonversion - ein Stahl aus Xenon-Atomen - nun innerhalb dieser Anordnung platziert, so kann die Konversion ins XUV bei einer sehr hohen Wiederholfrequenz von über 100 Millionen Pulsen pro Sekunde stattfinden. Zudem geht das Licht, das nach einem Durchgang durch das Medium nicht konvertiert wurde, nicht verloren, sondern wird weiter zwischen den Spiegeln gespeichert und kann somit zu weiteren Durchläufen durch das Medium beitragen.

Eine solche XUV-Quelle ist nicht nur für die Grundlagenforschung und die hochpräzise Spektroskopie von Interesse. Die Einfachheit und Kompaktheit der Quelle und die hohe Wiederholrate stellen auch Anwendungen in der Halbleiterherstellung oder der hochdichten holographischen Datenspeicherung in Aussicht.

Ein ähnliches Ergebnis wurde kürzlich auch von der Gruppe von Jun Ye am JILA in Boulder, USA, publiziert (Physical Review Letters, Vol. 94, Nr. 193201).

Christoph Gohle | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpq.mpg.de
http://www.mpg.de

Weitere Berichte zu: Atomkernuhr Frequenz Konversion Laser XUV

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte