Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fluor steht in den Spektren massearmer Sterne geschrieben

27.04.2005


Astrophysiker finden Hinweise auf die Erzeugung des relativ seltenen Elements


Bei der Entstehung des Universums mit dem Urknall vor 13,7 Milliarden Jahren sind nur die zwei leichtesten chemischen Elemente gebildet worden: Wasserstoff und Helium. Alle anderen Elemente wurden erst später erzeugt, und zwar durch Kernprozesse im Inneren von Sternen. In unserer näheren kosmischen Umgebung machen diese schweren Elemente insgesamt nur etwa zwei Prozent der Masse aus, während Wasserstoff mit 70 Prozent und Helium mit 28 Prozent die häufigsten Elemente sind. Die Herkunft des Elements Fluor war bisher noch weitgehend unbekannt. Es ist ein sehr seltenes Element: Unter rund 25 Millionen Wasserstoffatomen findet man nur ein Fluoratom. In Zusammenarbeit mit amerikanischen Astrophysikern ist Prof. Klaus Werner und Dr. Thomas Rauch vom Institut für Astronomie und Astrophysik der Universität Tübingen nun erstmals der Nachweis von Fluor in den Spektren einer exotischen Gruppe von Zentralsternen Planetarischer Nebel gelungen. Es handelt sich dabei um massearme Sterne, die vor noch etwa 10 000 Jahren Rote Riesensterne waren. Die wissenschaftliche Arbeit ist im April 2005 in der Fachzeitschrift Astronomy & Astrophysics erschienen (Vol. 433, S. 641).

Forscher wissen heute im Wesentlichen, wie sich schwere Elemente in Sternen bilden. Sowohl die Kernprozesse sind bekannt, als auch die Entwicklung der Sterne, an deren Ende die im Inneren erzeugten Elemente in den Weltraum zurückgegeben werden. Aus diesem Material bilden sich neue Sterne, in denen die schweren Elemente weiter angereichert werden. Dieser kosmische Materiekreislauf ist so gut bekannt, dass man auch erklären kann, warum manche Elemente seltener sind als andere. Während fast alle chemischen Elemente auch in anderen Sternen nachgewiesen wurden, war jedoch unser eigenes Sonnensystem für lange Zeit der einzige Ort in unserer Milchstraße, an dem Fluor nachgewiesen und seine Häufigkeit gemessen werden konnte. Ein Rätsel blieb lange, wo das Fluor überhaupt erzeugt wird. Diese Situation begann sich erst vor gut zehn Jahren zu ändern.


1992 gelang einer amerikanischen Forschergruppe erstmals der Nachweis von Fluorwasserstoff-Molekülen in Infrarotspektren von Roten Riesensternen. Eine genaue Analyse ergab für manche dieser Sterne eine Fluorhäufigkeit, die deutlich über der kosmischen Häufigkeit liegt. Damit war erstmals klar, dass Fluor im Inneren von Roten Riesensternen erzeugt wird. Rote Riesen repräsentieren ein spätes Entwicklungsstadium von Sternen, die der Sonne ähneln, also Objekte mit relativ geringer Masse (weniger als rund zehn Sonnenmassen). Auch unsere Sonne wird sich in etwa vier Milliarden Jahren auf das 100-fache ihrer heutigen Größe aufblähen und zu einem Roten Riesen werden. Im Inneren fusionieren diese Sterne Wasserstoff zu Helium und, weiter außen, Helium zu Kohlenstoff. Theoretische Rechnungen zeigen, dass die Region, in der Helium zu Kohlenstoff fusioniert wird ("heliumbrennende" Region), auch der Entstehungsort von Fluor ist. In einer komplizierten Reaktion entsteht aus vorhandenem Stickstoff (durch Anlagerung von zwei Heliumatomen) das Fluor. Allerdings ist Fluor ein Element, das leicht wieder zerstört werden kann, so dass die Effektivität der Fluorproduktion in massearmen Sternen noch unklar ist. Ein weiteres Problem besteht darin, wie es der Stern schafft, eventuell produziertes Fluor vom Inneren an die Oberfläche zu bringen, so dass es dann von dort durch einen Sternwind in den kosmischen Materiekreislauf eingespeist werden kann.

Auch wegen dieses Problems werden noch zwei andere "kosmische Produktionsstätten" von Fluor diskutiert. Auch massereiche Sterne (mit Massen größer als etwa 10 Sonnenmassen) haben im Inneren eine heliumbrennende Region, in der Zustände herrschen, die der Produktionsstätte von Fluor in massearmen Sternen ähneln. Im Gegensatz zu ihren "leichten" Geschwistern haben die schweren Sterne (so genannte Wolf-Rayet-Sterne) kein Problem, das produzierte Fluor an die Oberfläche zu schaffen. Sie verlieren im Laufe ihres Lebens so viel Materie durch starke Sternwinde, dass die Regionen, in denen Fluor produziert wurde, schließlich freigelegt werden und das Fluor dann mit dem Sternwind in den Weltraum fort getragen werden kann. Die zweite Alternative zur Fluorproduktion ist deutlich exotischer. Bei der Supernovaexplosion von massereichen Sternen am Ende ihres Lebens kommt es durch Kernspaltung von Neon (durch Neutrinos) zur Bildung von Fluor. Obwohl der direkte Nachweis von Fluor in massereichen Sternen bis heute fehlt, glaubt man, dass die Wolf-Rayet-Sterne die Hauptproduzenten des Fluors, das sich heute im Universum befindet, waren beziehungsweise noch sind.

Die massearmen Sterne, in deren Spektren das deutsch-amerikanische Team von Astrophysikern Fluor nachgewiesen hat, zeigen eine sehr ungewöhnliche chemische Zusammensetzung an ihrer Oberfläche. Wasserstoff, das üblicherweise häufigste Element, fehlt völlig. Stattdessen sind Helium und Kohlenstoff die häufigsten Elemente. Man glaubt heute, dass diese Sterne dasjenige Material, das früher die heliumbrennende Region ausmachte, durch eine Instabilität im Fusionszyklus an die Oberfläche geschafft haben. Mit anderen Worten, die Materie, die durch den Fusionsofen erzeugt worden ist und normalerweise im Inneren der Sterne verborgen bleibt, ist nun unseren Blicken frei zugänglich.

Eine genaue Analyse ergab nun, dass die Fluorhäufigkeit in diesen Sternen das bis zu 250-fache des normalen kosmischen Wertes beträgt. Das beweist, dass massearme Sterne auf jeden Fall in der Lage sind, große Mengen an Fluor zu produzieren und anzureichern. Sie dürften deshalb einen erheblichen Anteil an der Fluorproduktion im Universum haben. Wie hoch der Anteil im Vergleich zu den massereichen Sternen ist, ob sie vielleicht sogar die dominanten Fluorproduzenten sind, wird solange unklar bleiben, bis die Entdeckung von Fluor in den "schweren" Sternen gelingt. Dieser Nachweis wird schwierig sein, aber die Suche nach Fluor in solchen Sternen ist im Gange.

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de

Weitere Berichte zu: Fluor Helium Kohlenstoff Spektren Sternwind Wasserstoff

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit

Antibiotikaresistenz zeigt sich durch Leuchten

28.03.2017 | Biowissenschaften Chemie