Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Andromeda IX - die lichtschwächste bekannte Galaxie

04.06.2004


Entdeckung der bisher am schwächsten leuchtenden Galaxie könnte Aufschluss geben über die Dunkle Materie, um die sich die leuchtende Materie im Universum gruppiert


Bild oben: Ausschnitt aus der Vermessung der Andromeda-Galaxie (M 31) im Rahmen des SDSS, der im Ausschnitt links auch Andromeda IX enthält. Unten links: Darstellung der relativen Dichte lichtschwacher Sterne im oben angegebenen Ausschnitt. Die zentrale Verdichtung lässt die Position von Andromeda IX erkennen. Unten Mitte: Eine Vergrößerung des Feldes um Andromeda IX. Die schwache Erhöhung der Sterndichte ist kaum erkennbar. Die meisten helleren Sterne stehen im Vordergrund, sie gehören unserem Milchstraßensystem an. Frühere Durchmusterungstechniken hätten wohl kaum zur Entdeckung von Andromeda IX geführt. Unten rechts: Dieser Ausschnitt aus der äußeren Scheibe der Andromeda-Galaxie ist so groß wie das daneben stehende Feld um Andromeda IX. Er zeigt, um wie viel lichtschwächer der neu entdeckte Satellit ist.

Bild: Daniel Zucker und die SDSS-Collaboration. Das Bild unten Mitte wurde dem ING-Archiv entnommen, es entstammt einem von Nial Tanvir et al. durchgeführten Programm.


Andromeda IX, die lichtschwächste jemals entdeckte Galaxie. Die meisten Sterne auf diesem Bild stehen im Vordergrund und gehören unserem eigenen Milchstraßensystem an. Andromeda IX ist als die minimale Konzentration schwacher Sterne in der Bildmitte kaum zu erkennen. Diese Galaxie ist einige 100.000 Mal schwächer als die Andromeda-Galaxie oder unser Milchstraßensystem, ihr Durchmesser beträgt etwa 3.000 Lichtjahre, ihre Entfernung zwei Millionen Lichtjahre.

Bild: Daniel Zucker und die SDSS-Collaboration. Die Bilddaten entstammen einem von Nial Tanvir et al. durchgeführten Programm.



Im Rahmen des Sloan Digital Sky Survey (SDSS), eines internationalen Projekts zur hochempfindlichen Durchmusterung großer Himmelsareale, hat eine Gruppe von Astronomen die lichtschwächste jemals beobachtete Galaxie entdeckt - sie liegt unmittelbar vor unserer kosmischen Haustür. Die Entdeckung wurde auf dem 204. Jahrestreffen der American Astronomical Society (AAS) am 31. Mai 2004 in Denver/USA präsentiert. Sie bedeutet einen wichtigen Fortschritt für unser Verständnis der Dunklen Materie und ihrer Rolle bei der Bildung von Galaxien.



Die neu entdeckte Galaxie steht nicht weit vom Großen Andromeda-Nebel und trägt den Namen Andromeda IX. Sie ist etwa halb so lichtstark wie der bisherige Rekordhalter (hinsichtlich der Lichtschwäche) und so diffus, dass sie nur etwa ein Hundertstel so hell ist wie der Nachthimmel. Der Andromeda-Nebel, auch M 31 genannt, ist eine etwa zwei Millionen Lichtjahre von unserem Milchstraßensystem entfernte und eine diesem sehr ähnliche Spiralgalaxie - und damit ihr nächster großer Nachbar. Im Herbst ist er in unseren Breiten als schwach leuchtender Nebelfleck am Nachthimmel sichtbar.

Frühere Himmelsdurchmusterungen waren nicht hinreichend empfindlich, um derartige Objekte nachzuweisen. "Wir suchten nach losen Ansammlungen von Sternen - dabei haben wir diese unglaublich lichtschwache Galaxie in der unmittelbaren Nähe des Andromeda-Nebels entdeckt", erklärten Daniel Zucker und Eric Bell, zwei der am Sloan Digital Sky Survey (SDSS) beteiligte Wissenschaftler vom Max-Planck-Institut für Astronomie in Heidelberg.

Der Sloan Digital Sky Survey [1] ist die umfassendste bisher unternommene Himmelsdurchmusterung. Weltweit sind 200 Astronomen an diesem Projekt beteiligt, das Ergebnis wird eine Karte von etwa einem Viertel des gesamten Himmels sein, auf der Hunderte Millionen astronomischer Quellen mit ihren Positionen und Helligkeiten verzeichnet sind. Auch die Entfernungen von mehr als einer Million Galaxien und Quasare werden im Rahmen des SDSS bestimmt.

Die Durchmusterung wird am 2.5-Meter-Teleskop des Apache-Point-Observatoriums in New Mexico/USA durchgeführt. Das Teleskop ist zum Nachweis schwacher Objekte wie der Galaxie Andromeda IX besonders gut geeignet. Während der Durchmusterung wird das Teleskop nicht auf einen vorgegebenen Punkt am Himmel gerichtet. Vielmehr tastet es jede Nacht einen Streifen des Himmels ab, der von einem Horizont zum anderen reicht. Seine Kameras sind mit hochempfindlichen digitalen Detektoren bestückt, die in fünf verschiedenen Spektralbereichen empfindlich sind.

Das Teleskop ist etwa zehn bis hundert mal so effektiv wie andere Teleskope. Deshalb lassen sich damit von großen Himmelsarealen innerhalb kurzer Zeit Daten sammeln, in denen später nach seltenen und lichtschwachen Objekten gesucht werden kann. Deshalb eignet es sich zur Entdeckung von Galaxien wie Andromeda IX.

Im Anschluss an die Entdeckung von Andromeda IX wurden die SDSS-Daten wie auch ältere Archivbilder dieser Region zur Analyse der Galaxie herangezogen. Andromeda IX besitzt etliche Eigenschaften der Spheroidalen Zwerggalaxien - einer Klasse von kleinen, elliptisch geformten Galaxien, die typischerweise als Begleiter großer Galaxien auftreten. Aber sie ist deutlich lichtschwächer und diffuser als alle bisher bekannten Exemplare dieses Typs.

Die spheroidale Zwerggalaxie in Ursa Major (dem Großen Bären), ein Satellit unseres eigenen Milchstraßensystems, war bis vor kurzem die lichtschwächste bekannte Galaxie. Aber mit ihren rund 200.000 Sonnen ist Andromeda IX nur etwa halb so leuchtkräftig wie diese und nur ein Hunderttausendstel so leuchtkräftig wie das Milchstraßensystem. Dazu kommt, dass die wenigen Sterne in Andromeda IX über ein Gebiet verteilt sind, dessen Durchmesser etwa 3.000 Lichtjahre beträgt. Damit ist sie die am dünnsten besiedelte bekannte Galaxie.

"Kondensationskeime" der Galaxienbildung

Aber die Galaxie Andromeda IX ist nicht bloß als Rekordhalter von Interesse. Ihre Entdeckung hilft bei der Lösung eines der größten Rätsel, welche die heutigen Astronomen beschäftigen - das Rätsel der "fehlenden Satelliten". Die heute führende Theorie für die Entstehung großer Strukturen im Kosmos ist auf dem Postulat der Existenz so genannter "Dunkler Materie" gegründet. Dunkle Materie, die das Licht weder emittiert noch absorbiert, ist nur durch die gravitative Anziehung beobachtbar, die sie auf sichtbare Materie ausübt.

Gemäß der auf dieser Vorstellung beruhenden Modelle hat die Dunkle Materie bald nach dem Urknall begonnen, Klumpen und lokale Verdichtungen zu bilden, während die normale Materie dazu noch zu heiß war. Kleinere Klumpen Dunkler Materie vereinigten sich zu immer größeren Strukturen. Als später die normale Materie hinreichend weit abgekühlt war, um die gravitative Anziehung der Dunklen Materie zu spüren, kollabierte sie in Richtung auf die bereits vorhandenen Verdichtungen Dunkler Materie. Auf diese Weise wirkten die Verdichtungen der Dunklen Materie als "Kondensationskeime" für die Bildung der Galaxien.

Das Rätsel der "fehlenden Satelliten" besteht nun darin, dass nach dieser Modellvorstellung die großen Galaxien etwa hundertmal so viele kleine Begleiter (von denen jeder sich um einen Klumpen Dunkler Materie bildete) haben sollten, als bisher beobachtet. Die Entdeckung von Andromeda IX weist nun auf die Möglichkeit hin, dass diese Begleiter einfach nur zu lichtschwach sind, als dass man sie in früheren Durchmusterungen hätte entdecken können.

"Die Überdeckung großer Himmelsareale und die extreme Empfindlichkeit des SDSS sind völlig neuartig und haben uns in die Lage versetzt, solche unglaublich schwachen Objekte wie Andromeda IX und Andromeda NE [2] zu finden, und zwar über den Nachweis, nicht ihrer gesamten Leuchtkraft, sondern der einzelnen Sterne, aus denen sie bestehen," so Eva Grebel von der Universität Basel, eine an der Entdeckung von Andromeda IX beteiligte Wissenschaftlerin.

Der Einsatz der beschriebenen Technik führte zur Entdeckung einen ganzen Reihe weiterer kleiner Gebilde. "Es handelt sich möglicherweise um ferne Galaxien; wenn sich aber herausstellt, dass auch nur wenige von ihnen tatsächlich nahe, extrem leuchtschwache Objekte sind, dann wäre das Rätsel der fehlenden Satelliten weitgehend gelöst," meint Alexei Kniazev, ein Wissenschaftler des Max-Planck-Instituts für Astronomie. "Wir benötigen weitere Daten, um ganz sicher zu sein."

Zu den Entdeckern von Andromeda IX zählen außer den am SDSS beteiligten Wissenschaftlern des Max-Planck-Instituts für Astronomie in Heidelberg und des Astronomischen Instituts der Universität Basel auch Kollegen der Universität Washington, Seattle, und der State University in Las Cruces, New Mexico/USA.

Der Sloan Digital Sky Survey (SDSS)

Das Apache Point Observatory mit seinem für den SDSS eingesetzten Teleskop wird vom Astrophysical Research Consortium (ARC) betrieben. Am SDSS sind die folgenden Institute beteiligt: The University of Chicago, Fermilab, Institute for Advanced Study, Japan Participation Group, Johns Hopkins University, Los Alamos National Laboratory, Max-Planck-Institut für Astronomie (MPIA, Heidelberg), Max-Planck-Institut für Astrophysik (MPA, Garching), New Mexico State University, University of Pittsburgh, Princeton University, United States Naval Observatory und University of Washington.

Das Projekt wird finanziert von: Alfred P. Sloan Foundation, den beteiligten Institutionen, National Aeronautics and Space Administration, National Science Foundation, U.S. Department of Energy, Japanese Monbukagakusho und Max-Planck-Gesellschaft.

Einige der für diese Forschung verwendeten Daten wurden zur Verfügung gestellt vom Isaac Newton Groups’ Wide Field Camera Survey Programme. Das Isaac-Newton-Teleskop wird auf der Insel La Palma vom spanischen Observatorio del Roque de los Muchachos und dem Instituto de Astrofísica de Canarias betrieben.

Originalveröffentlichung:

Daniel B. Zucker, Alexei Y. Kniazev, Eric F. Bell, David Martinez-Delgado, Eva K. Grebel, Hans-Walter Rix, Constance M. Rockosi, Jon A. Holtzman, Rene A. M. Walterbos, James Annis, Donald G. York, Zeljko Ivezic, J. Brinkmann, Howard Brewington, Michael Harvanek, Greg Hennessy, S. J. Kleinman, Jurek Krzesinski, Dan Long, Peter R. Newman, Atsuko Nitta, Stephanie A. Snedden
Andromeda IX: A New Dwarf Spheroidal Satellite of M31
Astrophysics, abstract astro-ph/0404268, http://xxx.lanl.gov/abs/astro-ph/0404268, submitted to ApJ Letters

Weitere Informationen erhalten Sie von:

Dr. Eric Bell
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-263, Fax: -246
E-Mail: bell@mpia.de

Dr. Daniel Zucker
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-289
E-Mail: zucker@mpia.de

Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-387
E-Mail: staude@mpia.de

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpia.de

Weitere Berichte zu: Andromeda Digital Durchmusterung Materie SDSS

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie