Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UNIK: Quantenkontrolle im Lichte polarisationsgeformter ultrakurzer Laserpulse

25.05.2004


Experiment auf dem Weg zu besseren Medikamenten erfolgreich

Erstmals ist es jetzt in einem Experiment an der Universität Kassel gelungen, mithilfe von polarisationsgeformten ultrakurzen Laserblitzen eine neue Dimension bei der gezielten Steuerung chemischer Reaktionsverläufe aufzuzeigen. Das gezielte Zerlegen und Neuformen von Molekülen kann helfen, eines Tages neue, reinere und schädigungsärmere Medikamente herzustellen, wie Prof. Dr. Thomas Baumert, Fachbereich Naturwissenschaften und Mitglied des interdisziplinären Zentrums für Nanostrukturforschung CINSaT an der Universität Kassel, erläutert. Die Ergebnisse des Experimentes, die gemeinsam mit der Arbeitsgruppe Prof. Dr. Gustav Gerber, Universität Würzburg, durchgeführt wurden, sind jetzt in der renommierten Zeitschrift "Physical Review Letters" erschienen.

Dass Licht polarisiert sein kann, wissen Photographen schon lange. Dass die Polarisation von Licht aber auf einer Zeitskala von Billiardstel Sekunden gezielt verformt werden kann, ist eine Errungenschaft modernster Lasertechnik, die an der Universität Würzburg in der Arbeitsgruppe Prof. Gustav Gerber erst kürzlich entwickelt wurde. Am Institut für Physik der Universität Kassel in der Arbeitsgruppe Prof. Dr. Thomas Baumert wurde nun in Kooperation mit der Universität Würzburg ein wegweisendes Experiment mit Hilfe dieser Technik durchgeführt. Bisher schon wurden von den Arbeitsgruppen spektakuläre Erfolge bei der aktiven Steuerung chemischer Reaktionsabläufe mit Hilfe geformter ultrakurzer Laserblitze erzielt. Der Trick dabei war, dass in "selbstlernenden Laseranordnungen" unter anderem der "Farbverlauf" in einem ultrakurzen Laserblitz dem Reaktionsablauf angepasst wurde. In dem neuen Experiment konnte nun erstmals gezeigt werden, dass eine neue Dimension der Reaktionssteuerung erzielt wird, wenn zusätzlich die Polarisation des Laserlichtes automatisch an den Reaktionsablauf angepasst wird. Das Experiment bildet die physikalische Grundlage für die Synthese neuartiger schädigungsarmer Medikamente.

Für seine grundlegenden Arbeiten, die Steuerung chemischer Reaktionen mit ultrakurzen Lichtpulsen, wurde Baumert – zusammen mit Professor Gustav Gerber und Dr. Volker Seyfried von der Universität Würzburg - mit dem Philip-Morris Forschungspreis 2000 ausgezeichnet. Am California Institute of Technology in Pasadena hatte er zuvor in der Gruppe des Chemikers Ahmed Zewail gearbeitet, der 1999 den Nobelpreis für Chemie erhielt. Baumert ist dabei der Spezialist für Femtosekundenspektrosokopie: Er erforscht, wie sich unter Lichtpulsen mit der Dauer eines millionstel Teils einer milliardstel Sekunde Materie verändert oder Aufschluss über ihre Beschaffenheit gibt. Die Femtosekundenspektroskopie erschließt über die Wechselwirkung zwischen Licht und Materie die Dynamik und Struktur derselben.

Lichtimpulse knacken Moleküle

Baumert nutzt das Licht als Werkzeug. Seine Laserpulse sind für ihn ein winziger Lichthammer. Wer bisher ein Molekül, die Verbindung von mindestens zwei Atomen, knacken will, führte meist Wärmeenergie zu. Das Gefüge wird instabiler, beginnt zu wabern, wie eine zuvor geleeartige Suppe, die langsam zum Köcheln gebracht wird. So, wie aus der Suppe irgendwann winzige Tropfen nach oben ausgeworfen werden, fliegt irgendwann ein Bruchstück aus dem wabernden Atomverbund. Damit aber nicht irgendeines, sondern ein ganz bestimmtes Teil, herausgebrochen wird, greift Baumert zu seinem Femto-Laser-Puls. Der chemische Prozess soll nicht zufällig, sondern gesteuert ablaufen. Baumert beschießt den Atomverbund mit einem ersten Lichtblitz und bringt ihn auf diese Weise in Schwingung. Ein zweiter Lichtblitz bricht femtosekundengenau im richtigen Moment den entscheidenden Teil heraus.

Revolution durch Evolution

Um den richtigen Moment zu finden, bedienen sich die Wissenschaftler eines selbstlernenden Verfahrens, das sich die Regeln der biologischen Evolution zu Nutze macht. So, wie die Natur durch Mutation, Kreuzung oder Klonen ständig versucht, sich zu optimieren, lernt die Laseranlage selbst, ihre Wirkung ständig zu verbessern. Im Lernprozess wird das Licht umgeformt oder zerlegt, so als würde ein Musiker alle Töne, die in einem Knall vereinigt sind, einzeln ausfiltern, um aus ihnen eine Symphonie zu komponieren. Das gezielte Zerlegen und Neuformen von Molekülen, sagt Baumert, könnte zum Beispiel eines Tages helfen, neue, reinere Medikamente herzustellen.


Dreidimensionale Darstellung des optimierten polarisationsgeformten Laser-pulses. Die dargestellte Zeitspanne erstreckt sich über drei billionstel Sekunden.
Quelle: CINSaT, Universität Kassel



Universität Kassel

... mehr zu:
»Laserblitz »Laserpuls »Molekül »Steuerung

Prof. Dr. Thomas Baumert
Fachbereich 18
tel (0561) 804 4452/-4660

fax (0561) 804 4453
e-mail baumert@physik.uni-kassel.de

| Universität Kassel
Weitere Informationen:
http://www.uni-kassel.de/presse/pm/

Weitere Berichte zu: Laserblitz Laserpuls Molekül Steuerung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften