Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UNIK: Quantenkontrolle im Lichte polarisationsgeformter ultrakurzer Laserpulse

25.05.2004


Experiment auf dem Weg zu besseren Medikamenten erfolgreich

Erstmals ist es jetzt in einem Experiment an der Universität Kassel gelungen, mithilfe von polarisationsgeformten ultrakurzen Laserblitzen eine neue Dimension bei der gezielten Steuerung chemischer Reaktionsverläufe aufzuzeigen. Das gezielte Zerlegen und Neuformen von Molekülen kann helfen, eines Tages neue, reinere und schädigungsärmere Medikamente herzustellen, wie Prof. Dr. Thomas Baumert, Fachbereich Naturwissenschaften und Mitglied des interdisziplinären Zentrums für Nanostrukturforschung CINSaT an der Universität Kassel, erläutert. Die Ergebnisse des Experimentes, die gemeinsam mit der Arbeitsgruppe Prof. Dr. Gustav Gerber, Universität Würzburg, durchgeführt wurden, sind jetzt in der renommierten Zeitschrift "Physical Review Letters" erschienen.

Dass Licht polarisiert sein kann, wissen Photographen schon lange. Dass die Polarisation von Licht aber auf einer Zeitskala von Billiardstel Sekunden gezielt verformt werden kann, ist eine Errungenschaft modernster Lasertechnik, die an der Universität Würzburg in der Arbeitsgruppe Prof. Gustav Gerber erst kürzlich entwickelt wurde. Am Institut für Physik der Universität Kassel in der Arbeitsgruppe Prof. Dr. Thomas Baumert wurde nun in Kooperation mit der Universität Würzburg ein wegweisendes Experiment mit Hilfe dieser Technik durchgeführt. Bisher schon wurden von den Arbeitsgruppen spektakuläre Erfolge bei der aktiven Steuerung chemischer Reaktionsabläufe mit Hilfe geformter ultrakurzer Laserblitze erzielt. Der Trick dabei war, dass in "selbstlernenden Laseranordnungen" unter anderem der "Farbverlauf" in einem ultrakurzen Laserblitz dem Reaktionsablauf angepasst wurde. In dem neuen Experiment konnte nun erstmals gezeigt werden, dass eine neue Dimension der Reaktionssteuerung erzielt wird, wenn zusätzlich die Polarisation des Laserlichtes automatisch an den Reaktionsablauf angepasst wird. Das Experiment bildet die physikalische Grundlage für die Synthese neuartiger schädigungsarmer Medikamente.

Für seine grundlegenden Arbeiten, die Steuerung chemischer Reaktionen mit ultrakurzen Lichtpulsen, wurde Baumert – zusammen mit Professor Gustav Gerber und Dr. Volker Seyfried von der Universität Würzburg - mit dem Philip-Morris Forschungspreis 2000 ausgezeichnet. Am California Institute of Technology in Pasadena hatte er zuvor in der Gruppe des Chemikers Ahmed Zewail gearbeitet, der 1999 den Nobelpreis für Chemie erhielt. Baumert ist dabei der Spezialist für Femtosekundenspektrosokopie: Er erforscht, wie sich unter Lichtpulsen mit der Dauer eines millionstel Teils einer milliardstel Sekunde Materie verändert oder Aufschluss über ihre Beschaffenheit gibt. Die Femtosekundenspektroskopie erschließt über die Wechselwirkung zwischen Licht und Materie die Dynamik und Struktur derselben.

Lichtimpulse knacken Moleküle

Baumert nutzt das Licht als Werkzeug. Seine Laserpulse sind für ihn ein winziger Lichthammer. Wer bisher ein Molekül, die Verbindung von mindestens zwei Atomen, knacken will, führte meist Wärmeenergie zu. Das Gefüge wird instabiler, beginnt zu wabern, wie eine zuvor geleeartige Suppe, die langsam zum Köcheln gebracht wird. So, wie aus der Suppe irgendwann winzige Tropfen nach oben ausgeworfen werden, fliegt irgendwann ein Bruchstück aus dem wabernden Atomverbund. Damit aber nicht irgendeines, sondern ein ganz bestimmtes Teil, herausgebrochen wird, greift Baumert zu seinem Femto-Laser-Puls. Der chemische Prozess soll nicht zufällig, sondern gesteuert ablaufen. Baumert beschießt den Atomverbund mit einem ersten Lichtblitz und bringt ihn auf diese Weise in Schwingung. Ein zweiter Lichtblitz bricht femtosekundengenau im richtigen Moment den entscheidenden Teil heraus.

Revolution durch Evolution

Um den richtigen Moment zu finden, bedienen sich die Wissenschaftler eines selbstlernenden Verfahrens, das sich die Regeln der biologischen Evolution zu Nutze macht. So, wie die Natur durch Mutation, Kreuzung oder Klonen ständig versucht, sich zu optimieren, lernt die Laseranlage selbst, ihre Wirkung ständig zu verbessern. Im Lernprozess wird das Licht umgeformt oder zerlegt, so als würde ein Musiker alle Töne, die in einem Knall vereinigt sind, einzeln ausfiltern, um aus ihnen eine Symphonie zu komponieren. Das gezielte Zerlegen und Neuformen von Molekülen, sagt Baumert, könnte zum Beispiel eines Tages helfen, neue, reinere Medikamente herzustellen.


Dreidimensionale Darstellung des optimierten polarisationsgeformten Laser-pulses. Die dargestellte Zeitspanne erstreckt sich über drei billionstel Sekunden.
Quelle: CINSaT, Universität Kassel



Universität Kassel

... mehr zu:
»Laserblitz »Laserpuls »Molekül »Steuerung

Prof. Dr. Thomas Baumert
Fachbereich 18
tel (0561) 804 4452/-4660

fax (0561) 804 4453
e-mail baumert@physik.uni-kassel.de

| Universität Kassel
Weitere Informationen:
http://www.uni-kassel.de/presse/pm/

Weitere Berichte zu: Laserblitz Laserpuls Molekül Steuerung

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie