Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Catch a Falling Ray

15.01.2004


The mention of Argentina conjures any number of exotic or dramatic images ... Eva Peron ... dancing the tango ... gauchos riding the plains ... falling high-energy cosmic rays.

... mehr zu:
»Auger »Matthews »Observatory

Well, perhaps high-energy cosmic rays haven’t worked their way into the travel brochures or spawned a Broadway musical just yet. Nevertheless, these rays – tiny particles from space that regularly pelt the earth – are the subject of one of the largest-scale scientific studies of its kind ever conducted, and one of the first parts of this project is now up and running in Argentina.

On a massive area of open plains just east of the Andes Mountains – a region known as Pampa Amarilla – a group of LSU professors, post-doctoral researchers and graduate students have been working on this $100 million cosmic-ray study with a broad international coalition at the new Pierre Auger Observatory.


The international coalition consists of some 250 scientists from 14 countries. The Auger facility, when completed, will span some 1,200 square miles and include more than 1,600 water tank detectors and several other structures, including a specialized observatory with 24 optical telescopes. The facility is managed by scientists from the Department of Energy’s Fermi National Accelerator Laboratory in Chicago.

With the recent commissioning of its 100th water tank detector, the Auger Observatory became the largest cosmic-ray experiment ever conducted. It continues to expand, and completion of the entire Argentina facility is expected in 2005.

LSU Associate Professor of Physics James Matthews, Dept. of Physics and Astronomy Chair Roger McNeil, postdoctoral researchers Rishi Meyhandan and Troy Porter, and several graduate students are helping to build this new facility, analyze the data gathered there and develop equipment and computer software and programming to aid in the experiments.

The background work on the project began more than 10 years ago, but the Argentinian facility only recently began operating and collecting data. Indeed, the LSU group is now analyzing the first round of information gathered at the facility.

A Cosmic Mystery

The project is large in scope because high-energy cosmic rays have baffled scientists for years and solving the mystery behind them requires a massive effort, explains Matthews. The structure of lower-energy rays – protons, nuclei, etc. – has been understood for some time, but scientists "don’t even know what the highest energy rays are or where they come from," he says.

"The only thing we know for sure about the high-energy rays is that they exist," Matthews says. "So, the best way to understand them is to collect and measure them ... let them tell us what they are and where they are from."

According to Matthews, cosmic rays were discovered more than a century ago. They strike the Earth from all different directions, all of the time, and they come in a range of "energies" that measure not only how fast they move, but how much "punch" they pack. Lower-energy rays are common, but high-energy rays are uncommon and have energy levels so high that they cannot be produced on earth.

"The highest energy rays are more than a billion times more energetic than any particles that can be produced in terrestrial (particle) accelerators," Matthews says. "It’s difficult to even imagine how to get particles to such energies."

Rare rays

Because the particles are so rare, collecting or studying them individually ? with a detector in space, for instance ? would take "something very huge," Matthews says.

"If Tiger Stadium were floating in space, it might catch one every 20 years or so," he says.

However, Matthews says, there are two dependable ways to detect them. Each makes use of the fact that, when a high-energy cosmic ray strikes the earth’s atmosphere, it blasts apart into a shower of particles that fall to the ground, primarily in the form of electrons.

First, it is possible to observe the shower that develops in the atmosphere when the rays hit. Matthews says that the shower produces a weak fluorescence – "a line of faintly glowing atmosphere" – that can be observed with the special "Fly’s-Eye" fluorescence telescopes that observe the sky in all directions. Second, it is possible to collect or detect the falling particles using water-tank detectors widely dispersed on the ground.

However, in order for these methods to work for their project, Matthews says, certain criteria had to be met. The only way for a telescope to see the very brief, faint light of an atmosphere shower is on very dark, clear nights, meaning that the location could be nowhere near a major city. In addition, in order to successfully collect the falling particles, it was necessary to find a location with miles of available space where the numerous collection instruments could be placed and spaced appropriately.

The location in Western Argentina fit the bill nicely, Matthews says. In addition, there are a number of South American scientists with experience in studying cosmic rays who are taking part in the project. Thus, the Auger Observatory was established.

Nevertheless, Matthews explains, in order to make sure the project can view the entire celestial sky, a second facility will be required in the Northern Hemisphere. Two possible sites in remote areas of Utah and Colorado have been identified, but the Northern observatory won’t be up-and-running for a few more years.

"These highest-energy cosmic rays are messengers from the extreme universe," says Nobel Prize-winner Jim Cronin of the University of Chicago, who helped conceive the Auger experiment. "They represent a great opportunity for discoveries."

Funding for the Pierre Auger Observatory in Argentina has come from 14 member nations. The United States contributes 20 percent of the total cost, with support provided by the Office of Science of the Department of Energy and by the National Science Foundation. Further information on the project is available at http://www.auger.org.


Rob Anderson
LSU Media Relations
225-578-3871

Rob Anderson | LSU
Weitere Informationen:
http://appl003.lsu.edu/unv002.nsf/9faf000d8eb58d4986256abe00720a51/1dbd4a6ffed8dc0986256e1600725d37?OpenDocument
http://www.auger.org

Weitere Berichte zu: Auger Matthews Observatory

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften