Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalte Kollisionen im Bose-Einstein-Kondensat

05.09.2002


Münchener Grundlagenforscher entdecken ungewöhnliche Eigenschaft von Materiewellen


Einen neuen Zustand der Materie bekommen die Grundlagenforscher des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität immer besser in den Griff: Markus Greiner, Olaf Mandel, Theodor W. Hänsch und Immanuel Bloch konnten jetzt erstmals experimentell zeigen, dass Materiewellen aus Bose-Einstein-Kondensaten ständig wiederkehrend kollabieren und kurz darauf wieder aufleben. Die Ursache dieses quantenmechanischen Effekts, über den die Forscher in der neuesten Ausgabe vom 5. September 2002 der britischen Fachzeitschrift "nature" berichten, eröffnet neue Perspektiven für künftige Quantencomputer.


Im Jahr 2001 wurde der Physik-Nobelpreis für bahnbrechende Arbeiten zur Erzeugung von Bose-Einstein-Kondensaten vergeben. Das ist - neben den bisherigen vier Aggregatszuständen fest, flüssig, gasförmig und Plasma - eine völlig neuartige Form von Materie: Wenige milliardstel Grad über dem absoluten Nullpunkt verlieren die in einem magnetischen Käfig eingesperrten einzelnen Atome eines Gases ihre Eigenständigkeit und verhalten sich wie ein einziges, quantenmechanisches Objekt, eine Art "Superatom". In diesem Anfang der zwanziger Jahre zuerst von dem indischen Physiker Satyendra Nath Bose (1894-1974) und Albert Einstein (1879-1955) in einem "Gedankenexperiment" beschriebenen Bose-Einstein-Kondensat haben alle Atome dieselben physikalischen Eigenschaften, gemeinsam besetzen sie das tiefstmögliche Energieniveau. Das Kondensat verhält sich wie eine einzige Welle, die Atome marschieren quasi im Gleichschritt.


Bisher hat man angenommen, dass die Materiewelle eines Bose-Einstein-Kondensats immer stabil bleibt und sich damit wie die Lichtwelle eines Lasers verhält (bei dem extrem reines Licht einer Wellenlänge exakt im gleichen Takt - kohärent - schwingt). Im Unterschied zum Laserlicht können die Atome eines Bose-Einstein-Kondensats jedoch miteinander kollidieren. Diese Zusammenstöße führen zu dem quantenmechanischen Effekt, den die Münchner Forscher jetzt zum ersten Mal beobachtet haben: Der wellenartige Zustand der Materie kollabiert und lebt, unter bestimmten Voraussetzungen, kurze Zeit später wieder auf. Dieser Vorgang wiederholt sich mehrfach. "Bei Laserlicht passiert dies nicht, denn Photonen können nicht miteinander kollidieren", erläutert Markus Greiner vom Garchinger Max-Planck-Institut für Quantenoptik.

Der wellenartige Zustand der Materie lässt sich - genau wie Laserlicht - durch ein Interferenzexperiment nachweisen. Dazu überlagern die Forscher Materiewellen von über 100.000 Bose-Einstein-Kondensaten miteinander. An den meisten Orten löschen sich die Wellen aus. Nur an einigen Stellen addieren sie sich konstruktiv und bilden so ein Interferenzmuster (siehe Abbildung). Kollabiert die Materiewelle, so verschwindet auch das Interferenzmuster und es bleibt nur noch eine diffuse Wolke von Atomen sichtbar. Lebt die Materiewelle jedoch wieder auf, erscheint auch das Interferenzmuster von neuem. Bis zu fünf aufeinander folgende Zyklen aus kollabierender und wieder auflebender Materiewelle wurden so beobachtet.

"Abbildung: Interferierende Materiewellen von 100.000 Bose-Einstein-Kondensaten: Wenn die Materiewellen kollabieren und nach etwa 600 Mikrosekunden wieder aufleben, verschwindet auch das Interferenzmuster und erscheint von neuem. Bis zu fünf aufeinanderfolgende Zyklen haben die Münchner Wissenschaftler des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität beobachtet"
"Foto: Max-Planck-Institut für Quantenoptik"

Der Kollaps der Materiewelle wird durch zahlreiche Zusammenstöße zwischen den Atomen verursacht. Das darauffolgende Wiederaufleben der Materiewelle zeigt den Forschern jedoch eindrucksvoll, dass bei diesen ultrakalten Temperaturen Kollisionen nicht, wie man erwarten könnte, Unordnung verursachen, sondern völlig geordnet und kontrolliert ablaufen.

Innsbrucker Physiker um Peter Zoller und Münchner Wissenschaftler um Hans Briegel haben kürzlich ein vielversprechendes Schema für einen Quantencomputer vorgeschlagen, das auf diesen kalten Kollisionen aufbaut. Dabei sollen Ketten von Atomen als Rechenregister kontrolliert auf einem Gitter angeordnet werden und durch kontrollierte Zusammenstöße mit einander wechselwirken. Die jetzt gelungenen Experimente demonstrieren die Funktionsweise dieser Kollisionen und sind somit ein erster wichtiger Schritt in diese Richtung.

Bei künftigen Quantencomputern versucht man als kleinste Informationseinheit zwei verschiedene Zustände eines einzelnen Quantensystems zu nutzen, das jedoch auch in einer Überlagerung der zwei Zustände existieren kann. Anders als bei herkömmlichen Computern, bei der eine Rechnung nach der anderen abgearbeitet werden muss, könnten Quantencomputer durch solche Überlagerungen gleichzeitig viele Operationen ausführen und wären damit für bestimmte Aufgaben klassischen Rechnern weit überlegen.

Weitere Informationen erhalten Sie von:

Dr. Immanuel Bloch
Max-Planck-Institut für Quantenoptik
Ludwig-Maximilians-Universität, München
Tel.: 0 89 / 21 80 - 37 04
Fax: 0 89 / 28 51 92
E-Mail: imb@mpq.mpg.de
Internet: http://www.mpq.mpg.de/~haensch/bec/

Prof. Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik
Ludwig-Maximilians-Universität, München
Tel.: 0 89 / 21 80 - 32 12
Fax.: 0 89 / 28 51 92
E-Mail: t.w.haensch@physik.uni-muenchen.de

Dr. Bernd Wirsing | Presseinformation

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten