Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftlicher Durchbruch für die Klimaforschung

07.03.2008
Aerosolphysik-Team der Universität Wien publiziert dazu im Fachmagazin "Science"

Paul Wagner, Professor für Physik der Universität Wien, und seinem Team ist es erstmals gelungen, die Kondensation an Aerosolpartikeln im Nanobereich sichtbar zu machen. Damit liefert er der Klimaforschung neue Erkenntnisse zur Entstehung von Wolken. Die Ergebnisse dieses wissenschaftlichen Durchbruchs sind seit Freitag, 7. März 2008, im Fachmagazin "Science" veröffentlicht.

Aerosolpartikel - ein Gemisch aus festen und/oder flüssigen Schwebeteilchen und Luft - spielen beim Klimawandel eine wichtige Rolle. Da sie für die Wolkenbildung verantwortlich sind, würde es ohne sie keine Wolken und damit keinen Wasserkreislauf geben. Ist die Atmosphäre mit Wasserdampf übersättigt, kondensiert dieser Wasserdampf an Aerosolpartikeln, bildet Tröpfchen und in der Folge Wolken. Die Kondensation von Wasserdampf findet jedoch nur an ganz bestimmten Aerosolpartikeln statt.

Dem Aerosolphysiker Physiker Paul Wagner und seinem Team ist nun insofern ein Durchbruch gelungen, als dass sie erstmals in Modellexperimenten die Kondensation an Aerosolpartikeln im Nanobereich sichtbar machen konnten. "Im Bereich von einem Nanometer bestehen die Aerosolpartikel aus Molekül-Clustern", so Paul Wagner: "Da wir die Partikel in ihren einzelnen Bestandteilen sehen, können wir nun beobachten, wie Wolkenkondensationskerne entstehen." Das Forschungsteam kann also entschlüsseln, welche Kriterien Aerosolpartikel zu erfüllen haben, damit sich Wolken bilden.

Der Modellversuch in der Expansionskammer im Detail

In der Expansionskammer wird zuerst eine mit einem organischen Dampf gesättigte Atmosphäre erzeugt, dann werden Nanopartikel, also Aerosolpartikel in Nanometergröße, eingebracht. Innerhalb von wenigen Millisekunden wird durch Expansion Dampfübersättigung erzeugt. Mit Hilfe eines Lasers werden nun jene Teilchen sichtbar, an denen sich Tröpfchen bilden und in der Folge Wolkenkondensationskerne heranwachsen. "Dieser Vorgang mag recht simpel klingen, dahinter steckt aber unglaublich viel Arbeit. Allein die Entwicklung der Expansionskammer dauerte Jahre", so Wagner.

Die Experimente in der Kammer lieferten die Grundlage für den Artikel in "Science", da dadurch belegt werden konnte, dass sich Dampfmoleküle schon an Partikel im unteren Nanobereich anlagern und diese als Wolkenkondensationskerne aktivieren. Wagner dazu: "Die Bildung von Kondensationskernen haben wir bei unterschiedlichen Sättigungsgraden dokumentiert. Diese Daten werden KlimaforscherInnen helfen, die Wolkenbildung besser zu verstehen."

Zusammenarbeit mit Finnland und Estland

An der "Science"-Publikation sind insgesamt neun ExpertInnen der Aerosolforschung aus Österreich, Finnland und Estland beteiligt. " Die Veröffentlichung in 'Science' ist ein Höhepunkt unserer langjährigen, intensiven Zusammenarbeit", erklärt Paul Wagner, Projektleiter des Teams der Universität Wien. Wagner arbeitet schon seit über 20 Jahren mit dem finnischen Aerosolexperten Markku Kulmala zusammen." Der Schwerpunkt der Forschungen an der Universität Wien lag im experimentellen Bereich. "Alle Versuche wurden an der Universität Wien durchgeführt", so Wagner: "Dafür haben wir eine hier entwickelte Expansionskammer und eine neue Generation von Aerosolklassifikatoren eingesetzt."

Kontakt
Ao. Univ.-Prof. Dr. Dr. h.c. Paul Wagner
Stv. Gruppensprecher der Aerosol-, Bio- und Umweltphysik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-511 74
M +43-664-602 77-511 74
paul.wagner@univie.ac.at
Rückfragehinweis:
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.sciencemag.org/cgi/content/full/319/5868/1374
http://www.univie.ac.at/

Weitere Berichte zu: Aerosolpartikel Expansionskammer

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie