Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fingerabdrücke bei Licht besehen - Ein neuer Effekt in der Quantenmechanik

17.01.2008
Wenn ein Atom Energie freisetzt durch Lichtemissionen, zeigt sich das so genannte optische Spektrum. Dabei werden einzelne "Portionen" abgegeben, die Lichtquanten, und das optische Spektrum besteht aus einzelnen farbigen Spektrallinien.

In manchen Systemen aber wird die Energie kontinuierlich abgegeben. Das optische Spektrum gleicht dann einem breiten und gleichmäßigen Farbband. Sind sowohl Quantenzustände als auch kontinuierliche Zustände gleichzeitig vorhanden, zeigen sich spezifisch geformte Spektrallinien.

Dieser Fano-Effekt hängt aber auch von der Intensität des Lichts ab, das die Anregungsenergie von außen liefert. Das zeigt jetzt ein internationales Forscherteam unter der Leitung von Professor Khaled Karrai vom "Center for NanoScience (CeNS)" der Ludwig-Maximilians-Universität (LMU) München und Mitglied des Exzellenzclusters "Nanosystems Initiative Munich (NIM)" sowie Professor Sasha Govorov von der Ohio University, USA, in der aktuellen Ausgabe der Fachzeitschrift "Nature". Der neu entdeckte nichtlineare Fano-Effekt zeigt bei niedriger Intensität des Lichts normale atomare Spektrallinien. Bei steigender Intensität gehen sie über in das typische Fano-Spektrum, das bis jetzt aber fast nicht nachgewiesen werden konnte.

Als wertvolles experimentelles und theoretisches Werkzeug soll der nicht-lineare Fano-Effekt nun in der Erforschung bislang kaum zugänglicher Bereiche der Quantenoptik und auch in der Entwicklung neuer Quantenwerkzeuge eingesetzt werden.

Spektrallinien werden manchmal als die Fingerabdrücke der Atome bezeichnet. Denn es sind jeweils charakteristische Linien, die ein optisches Spektrum ausmachen. Sie entstehen, wenn ein Atom Energie abgibt. Das kann spontan geschehen oder wenn Energie abgegeben wird, die das Atom zuvor von außen angeregt hat. Elektronen, die negativ geladenen atomaren Bestandteile, wandeln Energie in Licht um und umgekehrt, indem sie sich zwischen verschiedenen Energieniveaus bewegen. Das erfolgt in "Sprüngen", so dass die Energie in Lichtquanten abgegeben - oder auch aufgenommen - wird, also in kleinster, aber definierter Menge.

Bei bestimmten anderen System aber wird die Energie kontinuierlich abgegeben, und das optische Spektrum ist ein durchgängiges Farbband. "Ein breites Farbspekrum zeigt also an, dass den Elektronen ein Kontinuum an Energie zur Verfügung steht", sagt Karrai. "In unseren Experimenten haben wir uns aber mit Systemen beschäftigt, in denen quantisierte und kontinuierliche Zustände koexistieren, also gleichzeitig vorkommen."

Fraglich war, wie ein Elektron Energie aufnimmt, um diese gleichzeitig vorliegenden Zustände zu erreichen, ob in "Quantensprüngen" oder kontinuierlich. Wie so oft bei der intuitiv kaum zugänglichen Quantenmechanik war die Antwort darauf mehr als die Summe beider Effekte: Das Elektron wählte nicht etwa einen der Wege, sondern beide. "Dies aber führt zu quantenmechanischen Interferenzen mit einem unverkennbaren Fingerabdruck im optischen Spektrum", berichtet Karrai. "Das sind die Fano-Spektrallinien. Deren Analyse zeigt, wie die beiden Zustände in dem System kombiniert sind. Dieser schon seit mehr als 40 Jahren bekannte Fano-Effekt spielt mittlerweile in ganz unterschiedlichen Bereichen eine wichtige Rolle, etwa der Spektroskopie, der Atomphysik, der Festkörperphysik und auch der Nanophysik."

In der jetzt vorliegenden Arbeit konnte aber gezeigt werden, dass das Fano-Spektrum stark von der Intensität des Lichts abhängt, das die Anregungsenergie für die Elektronen liefert. "Dieser Effekt ist ziemlich spektakulär", so Karrai. "Wir haben ihn den nichtlinearen Fano-Effekt genannt." Bei dem experimentell genutzten System handelte es sich um so genannte Halbleiter-Quantenpunkte. Bei niedriger Lichtenergie aus einem Laser zeigten sie die für Atome typischen Spektrallinien. Mit ansteigender Laserstärke aber wurde der Fano-Effekt immer stärker. "Unser Experiment hat ein Kontinuum gezeigt, das bis jetzt zu schwach war, um nachgewiesen zu werden. Der nichtlineare Fano-Effekt dient hier also als eine Art Verstärker. Das aber macht ihn zu einem wichtigen Werkzeug für Theorie und Experiment, vor allem bei der Spektroskopie der Halbleiter-Quantenpunkte.

Ganz allgemein können nun alte Experimente an Atomen mit Hilfe moderner Instrumente untersucht werden. Der Fano-Effekt ist sehr wichtig, um den Elektronentransport und optische Spektren in Halbleitern zu interpretieren. Laser und andere Lichtquellen sind jetzt aber erstmals stark genug, um auch die nichtlinearen Fano-Effekte zeigen zu können. Damit aber ist der Weg frei, um an den Grenzen der Quantenoptik noch ein Stück weiter zu forschen. Daneben kann das Phänomen auch bei der Entwicklung von Quantensystemen mit zwei Zuständen (Qubit) genutzt werden, die etwa Grundlage für Quantencomputer sind. Die Kombination von quantisierten Ebenen und eines Kontinuums verringerte bislang die Einsatzfähigkeit eines solchen Werkzeugs. Der nichtlineare Fano-Effekt bietet jetzt aber ein bislang einmaliges, präzises und sensitives Analyseinstrument, um die Quellen der kontinuierlichen Spektren, die sich negativ auf die Quantenwerkzeuge auswirken, zu entdecken. (suwe)

Publikation:

"The nonlinear Fano effect",
M. Kroner, A.O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P.M. Petroff, W. Zhang, R. Barbour, B.D. Gerardot, R.J. Warburton & K. Karrai

Nature, 17. Januar 2008

Ansprechpartner:

Professor Dr. Khaled Karrai
Department für Physik und Center for NanoScience (CeNS) der LMU
Tel.: 089 / 2180 3725
Fax: 089 / 2180 3182
E-Mail: Karrai@physik.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Elektron Fano-Effekt Fingerabdruck Spektrallinie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Orientierungslauf im Mikrokosmos
24.05.2017 | Julius-Maximilians-Universität Würzburg

nachricht CAST-Projekt setzt Dunkler Materie neue Grenzen
23.05.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten

CRTD erhält 1.56 Millionen Euro BMBF-Förderung für Forschung zu degenerativen Netzhauterkrankungen

24.05.2017 | Förderungen Preise

Neues Helmholtz-Institut in Würzburg erforscht Infektionen auf genetischer Ebene

24.05.2017 | Förderungen Preise