Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Atome im Käfig

23.09.2013
An der TU Wien wurde eine neue Klasse von thermoelektrischen Materialien entdeckt. Dank eines überraschenden physikalischen Effekts können sie zur effizienteren Erzeugung von Strom verwendet werden.

Wenn Maschinen heiß werden, wird oft viel Energie nutzlos an die Umgebung abgegeben. Ein Teil dieser Abwärme könnte mit Hilfe von thermoelektrischen Materialien wieder zurückgewonnen werden: Sie erzeugen eine elektrische Spannung, wenn man mit ihnen heiße und kalte Objekte verbindet.


Clathrate Kristalle, die käfigartig einzelne Atome einschließen
TU Wien

An der TU Wien konnte nun eine neue, deutlich effektivere Klasse solcher thermoelektrischer Materialien hergestellt werden. Der Trick liegt in der ganz besonderen Kristallstruktur und einem erstaunlichen neuen physikalischen Effekt: In unzähligen mikroskopisch kleinen Käfiggittern werden einzelne Cer-Atome gefangen gehalten. Das ständige Rütteln dieser eingesperrten magnetischen Atome am Kristall-Käfig scheint für die außerordentlich guten Materialeigenschaften verantwortlich zu sein.

Cer-Gefängnisse aus dem Spiegelofen

„Clathrate“ heißen die Kristallverbindungen, bei denen einzelne Gast-Atome in käfigartigen Hohlräumen eingesperrt sind. „Diese Clathrate zeigen ganz bemerkenswerte Wärme-Eigenschaften“, sagt Prof. Silke Bühler-Paschen vom Institut für Festkörperphysik der TU Wien. Wie sich das Material genau verhält, hängt davon ab, wie die eingesperrten Einzelatome mit dem Gitterkäfig rundherum wechselwirken. „Wir hatten daher die Idee, Cer-Atome in die Käfige einzusperren, weil ihre magnetischen Eigenschaften ganz besondere Arten von Wechselwirkungen erwarten ließen“, erklärt Bühler-Paschen.

Lange schien das unmöglich: Alle früheren Versuche, magnetische Atome wie das Selten-Erd-Metall Cer in solche Strukturen einzubauen, scheiterten. Mit Hilfe eines ausgeklügelten Kristallzuchtverfahrens in einem Spiegelofen gelang nun Prof. Andrey Prokofiev (ebenfalls Festkörperphysik, TU Wien) das Kunststück, Clathrate aus Barium, Silizium und Gold herzustellen, die Cer-Atome enthalten.

Strom aus Hitze und Kälte

Das neue Material wurde dann auf seine Einsetzbarkeit als Thermoelektrikum überprüft. Mit Thermoelektrika verbindet man einen heißen mit einem kalten Bereich. „Die thermische Bewegung der Elektronen im Material hängt von der Temperatur ab“, erklärt Bühler-Paschen. „Auf der heißen Seite des Materials bewegen sich die Elektronen stärker als auf der kalten, wodurch sie zur kalten Seite diffundieren. So entsteht zwischen den beiden Seiten des Thermoelektrikums eine elektrische Spannung.“

Die Experimente zeigten, dass durch die eingesperrten Cer-Atome eine um 50% höhere Spannung erzielt werden kann - das neue Material hat eine extrem hohe Thermokraft. Außerdem ist die Wärmeleitfähigkeit der Clathrate extrem gering. Auch das ist wichtig, sonst würden sich die unterschiedlichen Temperaturen auf beiden Seiten des Materials rasch angleichen, und schließlich würde keine elektrische Spannung mehr übrigbleiben.

Der heißeste Kondo-Effekt der Welt

„Die Ursache für die außergewöhnlich guten Materialeigenschaften dürfte in einer bestimmten Art von Elektronen-Korrelation liegen - dem sogenannten Kondo-Effekt“, vermutet Bühler-Paschen: Die Elektronen der Cer-Atome sind mit den Kristallgitter-Atomen quantenmechanisch eng verbunden. Den Kondo-Effekt kannte man eigentlich aus der Tieftemperaturphysik, in der Gegend des absoluten Nullpunkts. Doch überraschenderweise spielen diese quantenphysikalischen Korrelationen im neuen Clathrat-Material auch bei hunderten Grad Celsius eine Rolle.

„Das Rütteln des eingesperrten Cer-Atoms am Gitter wird bei hoher Temperatur stärker“, erklärt Bühler-Paschen. „Und es ist genau dieses Rütteln, das den Kondo-Effekt bei hohen Temperaturen stabilisiert. Wir beobachten den heißesten Kondo-Effekt der Welt.“

Weiterforschen für noch bessere und billigere Clathrate

Das Forschungsteam wird an der TU Wien nun versuchen, diesen neuen Effekt auch auf andere Clathrate zu übertragen. Um das Material industriell noch interessanter zu machen, könnte man vielleicht das teure Gold durch andere Metalle ersetzen – etwa durch Kupfer. Cer könnte durch Mischmetall, eine billige Mischung aus Selten-Erd-Elementen ersetzt werden. Man darf sich also realistische Hoffnungen machen, dass solche maßgeschneiderten Clathrate in Zukunft industriell verwendet werden können, um aus Abwärme wertvolle elektrische Energie zurückzugewinnen.

Die Erfindung des neuen Materials und dessen Herstellungsverfahren wurde von der TU Wien bereits zum Patent angemeldet - unterstützt vom Forschungs- und Transfersupport der TU Wien.

Rückfragehinweis:
Prof. Silke Bühler-Paschen
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13716
silke.buehler-paschen@tuwien.ac.at
Prof. Andrey Prokofiev
Institut für Festkörperphysik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13113
andrey.prokofiev@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht APEX wirft einen Blick ins Herz der Finsternis
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht Matrix-Theorie als Ursprung von Raumzeit und Kosmologie
23.05.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

Je mehr die Elektronik Autos lenkt, beschleunigt und bremst, desto wichtiger wird der Schutz vor Cyber-Angriffen. Deshalb erarbeiten 15 Partner aus Industrie und Wissenschaft in den kommenden drei Jahren neue Ansätze für die IT-Sicherheit im selbstfahrenden Auto. Das Verbundvorhaben unter dem Namen „Security For Connected, Autonomous Cars (SecForCARs) wird durch das Bundesministerium für Bildung und Forschung mit 7,2 Millionen Euro gefördert. Infineon leitet das Projekt.

Bereits heute bieten Fahrzeuge vielfältige Kommunikationsschnittstellen und immer mehr automatisierte Fahrfunktionen, wie beispielsweise Abstands- und...

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Im Fokus: Klimaangepasste Pflanzen

25.05.2018 | Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Berufsausbildung mit Zukunft

25.05.2018 | Unternehmensmeldung

Untersuchung der Zellmembran: Forscher entwickeln Stoff, der wichtigen Membranbestandteil nachahmt

25.05.2018 | Interdisziplinäre Forschung

Starke IT-Sicherheit für das Auto der Zukunft – Forschungsverbund entwickelt neue Ansätze

25.05.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics