Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radarmodul für neue Anwendungen

13.05.2015

Kompakt, anpassbar, genau: ein Radarsystem mit diesen Eigenschaften eignet sich für viele Anwendungen. Wo andere Sensortechnologie wegen hoher Temperaturen oder schlechter Sicht wenig ausrichtet, soll das neuartige Radarmodul von Fraunhofer zum Einsatz kommen – in der Medizintechnik, der Logistik oder Industriesensorik. Das System wird auf der Sensor + Test vom 19. bis 21. Mai 2015 in Halle 12, Stand 537 präsentiert.

Mit Radar lassen sich aus der Distanz bei keiner oder schlechter Sicht Objekte erkennen. Dabei durchdringt Radar nicht nur Nebel, Staub und Rauch, sondern auch nichtmetallische Stoffe wie Kleidung, Folien und Holz. Ähnlich der Fledermaus sendet das Radargerät Signale, wenn auch keine Schall-, sondern elektromagnetische Wellen. Diese Ultrakurzwellen treffen auf Objekte, die wie ein Echo reflektieren und von Antennen empfangen werden. Sende- und Empfangssignal werden verglichen und daraus die Entfernung, Größe und Geschwindigkeit des Objekts berechnet.


Mehrantennensystem zur Erfassung räumlicher Informationen.

Quelle: Fraunhofer IPA

Eine der ersten und bis heute wichtigsten zivilen Radar-Anwendungen ist die Überwachung des Luftverkehrs durch die Flugverkehrskontrolle im Tower. Ebenso gehören Bordradare zur Standardausrüstung ziviler Flugzeuge und Schiffe. Trotz großer Potenziale beschränkt sich der zivile Radareinsatz auf wenige Bereiche wie etwa die Abstandswarnradare in der Automobilbranche. Denn die bisherigen Radarsysteme – basierend auf Keramiksubstraten – sind teuer, groß und vier bis fünf Kilo schwer; ihre Einsatzmöglichkeiten begrenzt.

Kompaktes Radarsystem für genaue Nah- und Fernerkennung

Forscher der Fraunhofer-Institute für Angewandte Festkörperphysik IAF, für Produktionstechnik und Automatisierung IPA sowie für Zuverlässigkeit und Mikrointegration IZM haben gemeinsam ein Radar entwickelt, das modular aufgebaut, kostengünstig, energieeffizienter, höher auflösend und universell einsetzbar ist. Dieses Radar arbeitet mit Millimeterwellen im Frequenzbereich von 75 bis 110 Gigahertz – dem W-Band – und kann selbst bei schwierigen Sichtverhältnissen auch kleine Objekte aus der Distanz erkennen. Seine Reichweite beträgt bei einer Ausgangsleistung von 10 Milliwatt bis zu 50 Meter.

Durch die kürzeren Wellenlängen von rund drei Millimetern fällt das W-Band-Radar kompakt aus. Das komplette System aus Galliumarsenid-Halbleiter, Radarsignalverarbeitung und digitaler Auswertung ist dank moderner Miniaturisierungstechniken nicht größer als eine Zigarettenschachtel. Neben der digitalen Signalverarbeitung enthält es ein Hochfrequenzmodul, einen Signalprozessor sowie eine Sende- und zwei Empfangsantennen mit dielektrischen Linsen.

»In diesem Radarsystem ist die mittlere Antenne nur Sender, die zwei äußeren sind Empfänger. Damit kann ich detektieren, in welchem Winkel das Objekt zu meinem Radarsystem steht. Mit der Entfernung und dem Winkel habe ich – wie bei einem Laserscan – die exakte Positionierung«, beschreibt Bernhard Kleiner, Gruppenleiter am Fraunhofer IPA, das Radarmodul. Ein weiterer Vorteil ist seine hohe Frequenz von 94 Gigahertz.

»Durch die kleinere Wellenlänge lassen sich auch kleinere Objekte detektieren und besser voneinander unterscheiden«, erklärt Kleiner. »Zum Vergleich: das Abstandswarnradar im Auto liegt bei 77 Gigahertz. Je höher die Frequenz, umso genauer die Messauflösung und Unterscheidbarkeit der Objekte. Außerdem wird die Bauweise kompakter.« Die Polymerlinsen der Antennen bündeln die elektromagnetischen Wellen. Dabei ist die Linsengröße an die Frequenz angepasst. Es lassen sich Linsen verschiedener Größen einsetzen, welche die Strahlen schon fast auf Euro-Münzen-Durchmesser bündeln können.

»Da wir eine dielektrische Antenne verwenden, ist der Öffnungswinkel frei wählbar. Wir können also sowohl große Flächen im Nahbereich erfassen als auch kleine, weit entfernte Objekte«, fasst Dr. Axel Hülsmann vom Fraunhofer IAF zusammen. So sei es ohne weiteres möglich, mit wenigen Radarsystemen einen mehrere hundert Meter breiten Zaun zu überwachen, etwa am Hamburger Containerhafen. »Überwachungskameras liefern bei dichtem Nebel, wie er oft am Elbehafen vorherrscht, keine hochaufgelösten Bilder mehr. Daher patrouillieren bei Schlechtwetterlage häufig Sicherheitskräfte mit Hundestaffeln«, weiß der Forscher.

Ein Anwendungsbeispiel von vielen

Dies prädestiniert das W-Band-Radar für vielfältige Anwendungsmöglichkeiten vor allem auch im medizinischen Bereich. An einem speziellen Anwendungsfall in der Prothetik arbeiten die IPA-Wissenschaftler. »Wir entwickeln für Prothesen eine Art Objekterkennung. Sie soll einer Steuerung Informationen über die Umgebung liefern und Antworten auf Fragen liefern wie: Ist in den nächsten 2 bis 3 Metern etwa eine Schwelle, über die ich stolpern könnte?«, so Kleiner.

Auf diese Weise kann die Bewegung der Prothese und der Gang angepasst werden, ohne dass der Prothesenträger vor dem Hindernis anhalten und seine Prothese beispielsweise unnatürlich auf die erste Stufe einer Treppe heben muss. Im Vergleich zu anderen Sensoren liefert Radar auch mehr Informationen über die Oberflächenbeschaffenheit der Objekte:

Ist diese beispielsweise nass oder vereist? Außerdem kann es in einem Gehäuse verbaut und unter der Kleidung getragen werden. Und: Im Gegensatz zu Röntgenscannern ist Radar nicht gesundheitsschädlich. Die Sendeleistung der kurzwelligen Strahlen im Millimeterbereich liegt bei 10 Milliwatt. Die eines Handys rangiert bei 1000 Milliwatt.

Die neuartige und kostengünstige Technologie für Radaranwendungen um 100 Gigahertz wurde im Rahmen der Fraunhofer-internen wirtschaftsorientierten strategischen Allianz (WISA) entwickelt.
Laufzeit: 1.2.2012–31.01.2015, Fördersumme: 2.264 490 €, Projektleitung: Fraunhofer
IAF, beteiligte Fraunhofer-Institute: IAF, IPA, IZM, Fördernummer: WISA 824 631

Zum 1. März 2015 ist das Gemeinschaftsprojekt in das BMBF-Projekt »FeuerWeRR« überführt worden. Auf Basis des vorausgegangenen WISA-Projekts wird in den laufenden 3 Jahren eine spezielle Sichthilfe für die Feuerwehr entwickelt.

Dabei soll das Radarsystem mit einer Bewegungserfassung und einer Infrarotkamera kombiniert werden, um der Feuerwehr in verrauchten Räumen eine Karte der Umgebung zu erstellen. Mit dem Radarsystem wird Entfernung und gleichzeitig Bewegung gemessen, Distanzen aufgenommen und diese mit dem Infrarotbild überlagert. So erhalten Einsatzkräfte der Feuerwehr in einer verrauchten Umgebung lebenswichtige Informationen über Objekte, Hindernisse und Menschen.

Laufzeit: 1.3.2015–28.2.2018, Gesamtzuwendung: 1,9 Mio €, Projektleitung: Fraunhofer IPA, BMBF-Fördernummer: 13N13479, Projektpartner: Fraunhofer IAF, Freiburg, metaio GmbH, München, Universität Stuttgart, Institut für Signalverarbeitung und Systemtheorie, Universität Stuttgart, Institut für Visualisierung und interaktive Systeme, assoziierte Partner: Dräger Safety, Lübeck, Berufsfeuerwehr Köln, im Unterauftrag: Berufsfeuerwehr Reutlingen

Fachlicher Ansprechpartner
Bernhard Kleiner | Telefon +49 711 970-3718 | bernhard.kleiner@ipa.fraunhofer.de | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Pressekommunikation
Jörg-Dieter Walz | Telefon +49 711 970-1667 | presse@ipa.fraunhofer.de
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA | Nobelstraße 12 | 70569 Stuttgart

Weitere Informationen:

http://www.micro-radar.de
http://www.bmbf.de/pubRD/Projektumriss_FeuerWeRR.pdf
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht ZUKUNFT PERSONAL SÜD & NORD: Workforce Management - der Mensch im Mittelpunkt der zukünftigen Arbeitswelt
20.02.2018 | GFOS mbH

nachricht Fraunhofer HHI präsentiert neueste VR- und 5G-Technologien auf dem Mobile World Congress
19.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics