Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radarmodul für neue Anwendungen

13.05.2015

Kompakt, anpassbar, genau: ein Radarsystem mit diesen Eigenschaften eignet sich für viele Anwendungen. Wo andere Sensortechnologie wegen hoher Temperaturen oder schlechter Sicht wenig ausrichtet, soll das neuartige Radarmodul von Fraunhofer zum Einsatz kommen – in der Medizintechnik, der Logistik oder Industriesensorik. Das System wird auf der Sensor + Test vom 19. bis 21. Mai 2015 in Halle 12, Stand 537 präsentiert.

Mit Radar lassen sich aus der Distanz bei keiner oder schlechter Sicht Objekte erkennen. Dabei durchdringt Radar nicht nur Nebel, Staub und Rauch, sondern auch nichtmetallische Stoffe wie Kleidung, Folien und Holz. Ähnlich der Fledermaus sendet das Radargerät Signale, wenn auch keine Schall-, sondern elektromagnetische Wellen. Diese Ultrakurzwellen treffen auf Objekte, die wie ein Echo reflektieren und von Antennen empfangen werden. Sende- und Empfangssignal werden verglichen und daraus die Entfernung, Größe und Geschwindigkeit des Objekts berechnet.


Mehrantennensystem zur Erfassung räumlicher Informationen.

Quelle: Fraunhofer IPA

Eine der ersten und bis heute wichtigsten zivilen Radar-Anwendungen ist die Überwachung des Luftverkehrs durch die Flugverkehrskontrolle im Tower. Ebenso gehören Bordradare zur Standardausrüstung ziviler Flugzeuge und Schiffe. Trotz großer Potenziale beschränkt sich der zivile Radareinsatz auf wenige Bereiche wie etwa die Abstandswarnradare in der Automobilbranche. Denn die bisherigen Radarsysteme – basierend auf Keramiksubstraten – sind teuer, groß und vier bis fünf Kilo schwer; ihre Einsatzmöglichkeiten begrenzt.

Kompaktes Radarsystem für genaue Nah- und Fernerkennung

Forscher der Fraunhofer-Institute für Angewandte Festkörperphysik IAF, für Produktionstechnik und Automatisierung IPA sowie für Zuverlässigkeit und Mikrointegration IZM haben gemeinsam ein Radar entwickelt, das modular aufgebaut, kostengünstig, energieeffizienter, höher auflösend und universell einsetzbar ist. Dieses Radar arbeitet mit Millimeterwellen im Frequenzbereich von 75 bis 110 Gigahertz – dem W-Band – und kann selbst bei schwierigen Sichtverhältnissen auch kleine Objekte aus der Distanz erkennen. Seine Reichweite beträgt bei einer Ausgangsleistung von 10 Milliwatt bis zu 50 Meter.

Durch die kürzeren Wellenlängen von rund drei Millimetern fällt das W-Band-Radar kompakt aus. Das komplette System aus Galliumarsenid-Halbleiter, Radarsignalverarbeitung und digitaler Auswertung ist dank moderner Miniaturisierungstechniken nicht größer als eine Zigarettenschachtel. Neben der digitalen Signalverarbeitung enthält es ein Hochfrequenzmodul, einen Signalprozessor sowie eine Sende- und zwei Empfangsantennen mit dielektrischen Linsen.

»In diesem Radarsystem ist die mittlere Antenne nur Sender, die zwei äußeren sind Empfänger. Damit kann ich detektieren, in welchem Winkel das Objekt zu meinem Radarsystem steht. Mit der Entfernung und dem Winkel habe ich – wie bei einem Laserscan – die exakte Positionierung«, beschreibt Bernhard Kleiner, Gruppenleiter am Fraunhofer IPA, das Radarmodul. Ein weiterer Vorteil ist seine hohe Frequenz von 94 Gigahertz.

»Durch die kleinere Wellenlänge lassen sich auch kleinere Objekte detektieren und besser voneinander unterscheiden«, erklärt Kleiner. »Zum Vergleich: das Abstandswarnradar im Auto liegt bei 77 Gigahertz. Je höher die Frequenz, umso genauer die Messauflösung und Unterscheidbarkeit der Objekte. Außerdem wird die Bauweise kompakter.« Die Polymerlinsen der Antennen bündeln die elektromagnetischen Wellen. Dabei ist die Linsengröße an die Frequenz angepasst. Es lassen sich Linsen verschiedener Größen einsetzen, welche die Strahlen schon fast auf Euro-Münzen-Durchmesser bündeln können.

»Da wir eine dielektrische Antenne verwenden, ist der Öffnungswinkel frei wählbar. Wir können also sowohl große Flächen im Nahbereich erfassen als auch kleine, weit entfernte Objekte«, fasst Dr. Axel Hülsmann vom Fraunhofer IAF zusammen. So sei es ohne weiteres möglich, mit wenigen Radarsystemen einen mehrere hundert Meter breiten Zaun zu überwachen, etwa am Hamburger Containerhafen. »Überwachungskameras liefern bei dichtem Nebel, wie er oft am Elbehafen vorherrscht, keine hochaufgelösten Bilder mehr. Daher patrouillieren bei Schlechtwetterlage häufig Sicherheitskräfte mit Hundestaffeln«, weiß der Forscher.

Ein Anwendungsbeispiel von vielen

Dies prädestiniert das W-Band-Radar für vielfältige Anwendungsmöglichkeiten vor allem auch im medizinischen Bereich. An einem speziellen Anwendungsfall in der Prothetik arbeiten die IPA-Wissenschaftler. »Wir entwickeln für Prothesen eine Art Objekterkennung. Sie soll einer Steuerung Informationen über die Umgebung liefern und Antworten auf Fragen liefern wie: Ist in den nächsten 2 bis 3 Metern etwa eine Schwelle, über die ich stolpern könnte?«, so Kleiner.

Auf diese Weise kann die Bewegung der Prothese und der Gang angepasst werden, ohne dass der Prothesenträger vor dem Hindernis anhalten und seine Prothese beispielsweise unnatürlich auf die erste Stufe einer Treppe heben muss. Im Vergleich zu anderen Sensoren liefert Radar auch mehr Informationen über die Oberflächenbeschaffenheit der Objekte:

Ist diese beispielsweise nass oder vereist? Außerdem kann es in einem Gehäuse verbaut und unter der Kleidung getragen werden. Und: Im Gegensatz zu Röntgenscannern ist Radar nicht gesundheitsschädlich. Die Sendeleistung der kurzwelligen Strahlen im Millimeterbereich liegt bei 10 Milliwatt. Die eines Handys rangiert bei 1000 Milliwatt.

Die neuartige und kostengünstige Technologie für Radaranwendungen um 100 Gigahertz wurde im Rahmen der Fraunhofer-internen wirtschaftsorientierten strategischen Allianz (WISA) entwickelt.
Laufzeit: 1.2.2012–31.01.2015, Fördersumme: 2.264 490 €, Projektleitung: Fraunhofer
IAF, beteiligte Fraunhofer-Institute: IAF, IPA, IZM, Fördernummer: WISA 824 631

Zum 1. März 2015 ist das Gemeinschaftsprojekt in das BMBF-Projekt »FeuerWeRR« überführt worden. Auf Basis des vorausgegangenen WISA-Projekts wird in den laufenden 3 Jahren eine spezielle Sichthilfe für die Feuerwehr entwickelt.

Dabei soll das Radarsystem mit einer Bewegungserfassung und einer Infrarotkamera kombiniert werden, um der Feuerwehr in verrauchten Räumen eine Karte der Umgebung zu erstellen. Mit dem Radarsystem wird Entfernung und gleichzeitig Bewegung gemessen, Distanzen aufgenommen und diese mit dem Infrarotbild überlagert. So erhalten Einsatzkräfte der Feuerwehr in einer verrauchten Umgebung lebenswichtige Informationen über Objekte, Hindernisse und Menschen.

Laufzeit: 1.3.2015–28.2.2018, Gesamtzuwendung: 1,9 Mio €, Projektleitung: Fraunhofer IPA, BMBF-Fördernummer: 13N13479, Projektpartner: Fraunhofer IAF, Freiburg, metaio GmbH, München, Universität Stuttgart, Institut für Signalverarbeitung und Systemtheorie, Universität Stuttgart, Institut für Visualisierung und interaktive Systeme, assoziierte Partner: Dräger Safety, Lübeck, Berufsfeuerwehr Köln, im Unterauftrag: Berufsfeuerwehr Reutlingen

Fachlicher Ansprechpartner
Bernhard Kleiner | Telefon +49 711 970-3718 | bernhard.kleiner@ipa.fraunhofer.de | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Pressekommunikation
Jörg-Dieter Walz | Telefon +49 711 970-1667 | presse@ipa.fraunhofer.de
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA | Nobelstraße 12 | 70569 Stuttgart

Weitere Informationen:

http://www.micro-radar.de
http://www.bmbf.de/pubRD/Projektumriss_FeuerWeRR.pdf
http://www.ipa.fraunhofer.de

Jörg Walz | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Auswerte-Elektronik QUADRA-CHEK 2000 von HEIDENHAIN: Zuverlässig und einfach messen
20.04.2018 | DR. JOHANNES HEIDENHAIN GmbH

nachricht tisoware auf der Zukunft Personal Süd und Nord 2018
20.04.2018 | tisoware - Gesellschaft für Zeitwirtschaft mbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics