Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

phoenix|x-ray präsentiert auf der SMT - CAD-basierte hochauflösende µAXI für maximale Fehlererkennung

01.04.2009
Für eine größtmögliche Fehlererkennung bei der automatischen Röntgeninspektion (AXI) bestückter Leiterplatten sind kleine Bildausschnitte mit Mikrometerauflösung, 360° Rotation, bis zu 70° Schrägdurchstrahlung, höchste Anfahrgenauigkeit von wenigen Mikrometern sowie zuverlässiger Wiederholbarkeit unbedingt notwendig.

Doch bei der konventionellen, inline durchgeführten AXI wird die Inspektionstiefe normalerweise von der Durchsatzrate der SMT-Linie bestimmt.


Der phoenix|x-ray microme|x mit x|act für hochauflösende Zero-Defect-Röntgeninspektion


CAD-Informationen und Inspektionsergebnisse werden auch bei Schrägdurchstrahlung und Rotation live ins Bild eingeblendet

Gerade bei einem hohen Mix an kleinen Serien kann daher ein offline eingesetztes hochauflösendes µAXI-System, das die oben genannten Qualitätskriterien erfüllt, oft die bessere Wahl sein.

Auf der diesjährigen SMT in Nürnberg präsentiert die Produktlinie phoenix|x-ray von GE Sensing & Inspection Technologies auf Stand 411 in Halle 7 seine x|act-Technologie für eine einfache und intuitive CAD-basierte µAXI mit sehr hoher Vergrößerung und daher vergleichsweise geringer Schlupf- und Pseudofehlerrate.

Ein weiteres Highlight auf dem Messestand ist der phoenix|x-ray nanome|x mit 180 kV high power nanofocus Röntgenröhre für besonders hochauflösende Röntgeninspektion und Computertomographie. Sein neuer temperaturstabilisierter Digitaldetektor sorgt für eine besonders brilliante Bildqualität.

Einfache CAD-Programmierung

Um die Programmierzeit zu minimieren, importiert x|act die CAD-Daten der bestückten Leiterplatte und erstellt daraus ein Modell, das einerseits als Übersichtskarte zur einfachen Navigation dient, andererseits eine Zuweisung von Prüfstrategien für die einzelnen zu inspizierenden Bauteile ermöglicht. Die Prüfstrategien beinhalten alle zur Inspektion notwendigen Informationen. Sie können für jeden Lötstellentyp erstellt, angepasst und in einer Bibliothek abgelegt werden. Nach der Zuweisung der Prüfstrategien werden die erforderlichen Ansichten und das Prüfprogramm automatisch erstellt.

Dank der CAD-basierten Programmierung sind alle Programmierungsschritte offline an einem separaten Arbeitsplatz durchführbar. Damit wird das Inspektionssystem nicht während der Programmierung blockiert und jedes Programm ist auf alle baugleichen phoenix|x-ray microme|x Röntgensysteme übertragbar. Die CAD-Informationen sind jederzeit und bei jedem Betrachtungswinkel als Einblendung im Livebild zu sehen. Dies ermöglicht bei manueller Inspektion immer eine schnelle und exakte Zuordnung der Lötstelle.

µAXI-fähiges System

Auf der SMT präsentiert phoenix|x-ray sein mit x|act ausgestattetes microme|x Röntgeninspektionssystem. Das Gerät verfügt standardmäßig über eine offene Mikrofocus-Röntgenröhre mit 180 kV maximaler Röhrenspannung und 20 W maximaler Leistung, die eine Detailerkennbarkeit von bis zu 0,5 µm ermöglicht. Durch die hohe Röhrenspannung und Leistung wird sichergestellt, dass auch hoch absorbierende Teile wie z.B. Kühlkörper auf PCBs durchstrahlt werden können.

Das Durchstrahlungsbild wird mit einer 2 Mpixel-Kamera auf einen 24‘‘-Monitor abgebildet. Um eine geometrisch korrekte Abbildung zu garantieren, wird dabei die unvermeidbare Bildverzerrung von Bildverstärker und Kamera herausgerechnet. Die Manipulation der Probe erfolgt über eine kalibrierte, synchronisierte 5-Achsen CNC mit hoher Wiederholgenauigkeit.

Zusatznutzen durch Computertomographie

Ein weiterer Vorteil einer offline Prüfung ist, dass das Röntgensystem abseits der Fertigungslinie und damit ohne Störung der Produktionslinie auch einfach zur manuellen Prüfung oder für 3D-Analysen von Bauteilen mittels Computertomographie (CT) genutzt werden kann. Dazu wird die Probe im Röntgenstrahl gedreht. Aus der so entstandenen Serie von 2D Durchleuchtungsbildern kann dann ein dreidimensionales Modell errechnet werden, das die zerstörungsfreie Untersuchung und dreidimensionale Visualisierung kleinerer Proben ermöglicht.

Die Kombination von technologisch ausgefeilter Hard- und Software ermöglicht beim microme|x mit x|act eine äußerst präzise Röntgeninspektion mit hoher Vergrößerung und maximaler Fehlererkennung bei zugleich minimalen Kosten. Der microme|x stellt damit eine optimale wirtschaftliche Systemlösung dar, die sowohl 2D-Röntgeninspektion als auch 3D-Computertomographie in einem Gerät vereint.

Für Leseranfragen:
GE Sensing & Inspection Technologies GmbH
phoenix|x-ray
Niels-Bohr-Str. 7
31515 Wunstorf
Tel.: +49 5031 172-0
Fax.: +49 5031 172-299
phoenix-info@ge.com
Pressekontakt:
Dr. Dirk Neuber
GE Sensing & Inspection Technologies GmbH
+49 5031 172 124
dirk.neuber@ge.com

Dr. Dirk Neuber | phoenix|x-ray
Weitere Informationen:
http://www.phoenix-xray.com
http://www.ge.com

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration
25.09.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht OLED auf hauchdünnem Edelstahl
21.09.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie

Eine detaillierte Waldkarte des blauen Planeten

26.09.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index steigt weiter

26.09.2017 | Wirtschaft Finanzen