Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Materialforschung für die Energiewende

14.06.2012
Der Exzellenzcluster Engineering of Advanced Materials (EAM) und das Department für Chemie und Bioingenieurwesen (CBI) der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) stellen auf der ACHEMA in Frankfurt vom 18. bis 22. Juni 2012 innovative Materialien und verfahrenstechnische Systemlösungen für die Energiewende vor.

Auf fast einhundert Quadratmetern Standfläche präsentieren der EAM mit seiner integrierten Graduiertenschule sowie das CBI in Forschungshalle 9.2, Stand E 93 zusätzlich ihr Angebot für Studierende und Wissenschaftler.


Prototyp eines maßgeschneiderten Reaktors mit optimierter Geometrie. Bild: EAM / CRT

Neue Hochleistungsmaterialien sind Grundvoraussetzung für neue Lösungen im Energiesektor. Entsprechende Innovationen setzen dabei an der gesamten Prozesskette an und erfordern interdisziplinäre Zusammenarbeit, für die im Exzellenzcluster EAM und seinem Umfeld in Erlangen (z. B. zwei Fraunhofer Institute, EnergieCampus Nürnberg, Bayerisches Zentrum für angewandte Energieforschung ZAE) exzellente Materialforschung mit verfahrenstechnischer Expertise verknüpft werden. Die ausgestellten Exponate zeigen Lösungsmöglichkeiten für die unterschiedlichsten Herausforderungen der Energiewende auf:

Optimierte Nutzung von regenerativen Energien
Stromerzeugung durch Windenergie spielt eine wichtige Rolle im regenerativen Energiemix. Ein Windrad mit gleich sechs Flügeln – bestehend aus zwei dreiflügeligen Rotoren auf einer horizontalen Rotationsachse – wurde am Lehrstuhl für Strömungsmechanik in seinem aerodynamischen Aufbau durch Simulation und experimentelle Überprüfung im Windkanal optimiert. Ziel ist es, die Gesamtleistung in der Umwandlung von Windenergie in Elektroenergie im Vergleich zum einzelnen Rad zu erhöhen. Dafür werden folgende Parameter optimiert: Querschnitt, Profil und relative Größe der Rotorblätter sowie die Rotationsrichtungen der Windräder.
Neue Speichertechnologien
Innovative Speichertechnologien sind der Schlüssel zur effizienten Nutzung erneuerbarer Energien. Die Chemische Reaktionstechnik zeigt Lösungsansätze auf. Eine neue Form der Speicherung des elektrolytisch aus regenerativem Strom hergestellten Wasserstoffs nutzt sogenannte „Liquid Organic Hydrogen Carriers“ (LOHC). Wasserstoff wird hier in einer Kohlenwasserstoffverbindung gespeichert. Diese Substanzgruppe ist nicht explosiv, hat eine ähnliche Konsistenz wie Dieseltreibstoff, erreicht bis zu 30 Prozent des Heizwertes von Heizöl und kann auch wie dieses in der bereits bestehenden Logistikkette vertrieben werden. Bei Energiebedarf wird dann die energiereiche Flüssigkeit (LOHC) unter Freisetzung von Wasserstoff in einer katalytischen Reaktion energetisch entladen und kann dann wieder zum Ort der Energieerzeugung zurückgebracht werden. Für die Wasserstoff-Freisetzung spielen katalytische Prozesse und optimierte Reaktoren die entscheidende Rolle.
Poröse Materialien für neue Reaktorsysteme
Die Chemische Reaktionstechnik zeigt außerdem Reaktorsysteme, die geometrisch komplex aufgebaut und gleichzeitig mechanisch, thermisch und korrosiv hochbelastbar sind. Als Grundstrukturen dieser Reaktoren dienen poröse metallische Bauteile, die durch selektives Elektronenstrahlschmelzen erzeugt werden. In diesem Verfahren kann nahezu jede dreidimensionale Form inklusive Reaktoreinbauten (z. B. interne Zellstruktur, Kühlschleifen) in nur einem Fertigungsschritt realisiert und danach die Oberfläche mit katalytisch aktiven Materialien beschichtet werden. So entstehen neuartige Katalysatorstrukturen oder Mikroreaktorelemente, die es in dieser Form einmalig sind. Diese Technologie wird derzeit im Projekt „Neue Materialien und Fertigungsprozesse für Komponenten in der Verfahrenstechnik – VerTec“ in Fürth etabliert und ist auf der Suche nach Pilotprojekten mit der Industrie.
Effiziente und umweltschonende Ölheizung
Auch bei der kleinsten Ölheizung der Welt spielen poröse Materialien eine entscheidende Rolle. Das Herzstück der Heizung besteht aus einem Porenbrenner, der eine emissionsarme Verbrennung mit hohem Wirkungsgrad ermöglicht und der am Lehrstuhl für Strömungsmechanik entwickelt wurde. Im Rahmen des Projektes PyrInno haben 13 Partner von 2006 bis 2008 eine Haus­energiezentrale für flüssige Brennstoffe zur Marktreife gebracht. Die Kernkomponente bildet ein kompakter Brenner, mit einem großen Leistungsmodulationsbereich von 1 kW bis 8 kW. Dieses Heizsystem mit seinem hohem Wirkungsgrad sowie geringem Platz- und Energiebedarf, reduzierter Schadstoff- und Schallemission ist perfekt geeignet für den zunehmend geringeren Energiebedarf in gut gedämmten Häusern.
Schichtssysteme auf Partikeln und mit Partikeln
Beschichtungen auf Partikeln lassen sich u. a. mit Wirbelschichtanlagen über verschiedene Verfahren wie z. B. ALD (Atomic Layer Deposition) besonders effizient einstellen. Solche Systeme werden z. B. für die nächste Generation von Li-Ionen-Batterien am Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik (LFG) entwickelt. Funktionale Schichten mit Partikeln werden u. a. in Solarzellen, für Elektroden von Brennstoffzellen oder für die druckbare Elektronik entwickelt. Immer geht es dabei Formulierung entsprechender Pasten und Tinten, welche eine gute Stabilität gegenüber Agglomeration und optimal eingestellte Fließeigenschaften aufweisen müssen. Über entsprechende Druckverfahren können die Schichtstrukturen und die -eigenschaften in weiten Grenzen gesteuert werden.
Basis für neue Materialien: maßgeschneiderte Moleküle und Partikelsys­teme
Die Herstellung, Analyse und Nutzung molekularer Bausteine für neue Materialien stellt eine Schlüssel- und Querschnittstechnologie dar. Am Lehrstuhl für Chemische Reaktionstechnik stehen Ionische Flüssigkeiten (IL) im Vordergrund. Diese bestehen ausschließlich aus Ionen, besitzen einen sehr niedrigen Dampfdruck und sind bei Raumtemperatur flüssig. Ihre Eigenschaften lassen sich für ein breites Anwendungsspektrum maßschneidern: z. B. als Bestandteil von Schmierstoffen für Windräder oder in Verbrennungsmotoren. Eine wichtige Rolle spielen sie auch in der Katalyse, z. B. in der sogenannten SILP (supported ionic liquid phase) Technologie, bei der Ionische Flüssigkeiten auf poröse Trägermaterialien immobilisiert werden. Durch Einbringen eines Katalysators in der IL können die Vorteile von heterogener und homogener Katalyse (molekulares Katalysatordesign, leichte Produktabtrennung) kombiniert werden.

Am Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik stehen die großtechnische Herstellung, Charakterisierung, Funktionalisierung und Anwendung neuer Partikelsysteme im Fokus. Ein besonders vielversprechendes Gebiet ist der Einsatz in modernen Solarzellen auf Basis von anorganisch-organischen Hybridmaterialen mit großem Potential. Diese könnten seltenen Erden und Silizium bald vollständig ablösen und spielen in vielen Materialbereichen wie Quantumdots in der Optoelektronik, Partikeln als Verstärkung in Leichtbaumaterialien, als Komponenten in der Optik und Photonik, sowie in der Katalyse eine tragende Rolle.

Exzellenzcluster Engineering of Advanced Materials (EAM)
Der an der FAU im November 2007 eingerichtete Exzellenzcluster „Engineering of Advanced Materials – Hierarchical Structure Formation for Functional Devices“ befasst sich mit der Erforschung und Entwicklung neuartiger Materialien. Die Vision des Clusters ist es, die Lücke zwischen der naturwissenschaftlich geprägten Grundlagenforschung auf dem Gebiet der Nanotechnologie und ihrer ingenieurwissenschaftlichen Umsetzung in wichtigen technologisch-wirtschaftlichen Schlüsselbereichen im Bereich Nanoelektronik, Optik & Photonik, Katalyse und Leichtbau zu schließen. In über 90 Projekten arbeiten 200 Wissenschaftlerinnen und Wissenschaftler aus acht Disziplinen (Angewandte Mathematik, Bio- und Chemieingenieurwesen, Chemie, Elektrotechnik, Informatik, Maschinenbau, Physik und Werkstoffwissenschaften) entlang der Prozesskette vom Molekül bis zum Material zusammen. Sie kooperieren dabei u. a. mit außeruniversitären Forschungseinrichtungen wie den beiden Erlanger-Fraunhofer Instituten, dem Max-Planck-Institut für die Physik des Lichtes sowie mit ausgewählten Industriepartnern. Für den Zeitraum von fünf Jahren konnten 40 Millionen Euro aus der Exzellenzinitiative sowie weitere 41 Millionen vom Bund, dem Land Bayern, der FAU und der Industrie eingeworben werden.
Department Chemie- und Bioingenieurwesen (CBI)
Das Chemie- und Bioingenieurwesen (CBI) beschäftigt sich mit der Veränderung von Stoffen durch chemische, physikalische und biologische Verfahren. Dabei sollen durch ständige Optimierung bestehender bzw. durch den Einsatz neuer Verfahren die Produkteigenschaften verbessert sowie die Anzahl und Menge unerwünschter Neben- und Abfallprodukte reduziert werden. Dank ihrer breiten Ausbildung sind Chemie- und Bioingenieure in vielen Industriezweigen vertreten: in der chemischen, pharmazeutischen, Erdöl- und Lebensmittelindustrie, im Anlagen- und Automobilbau sowie in der Energietechnik und dem Umweltschutz. In der Forschung engagieren sich die Lehrstühle des Departments CBI bei den Schwerpunkten chemische Reaktionstechnik, thermische, biologische medizinische Verfahrenstechnik, Grenzflächenverfahrenstechnik und vielskalige Simulationsverfahren, Anlagentechnik, Strömungsmechanik und Thermodynamik. Seit März 2011 werden durch den neu gegründeten Lehrstuhl für Energieverfahrenstechnik auch neue Technologien und Konzepte für eine CO2 arme Energieversorgung abgedeckt. In der Ausbildung trägt das Department die Bachelor- und Masterstudiengängen „Chemie- und Bioingenieurwesen“, „Life Science Engineering“ sowie „Energietechnik“ und ist an anderen Studiengängen der Technischen Fakultät beteiligt.

Weitere Informationen für die Medien:

Annette Tyrach
Tel.: 09131/85-20480
annette.tyrach@eam.uni-erlangen.de

Heiner Stix | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht OLED auf hauchdünnem Edelstahl
21.09.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Die Chancen der Digitalisierung für das Betriebliche Gesundheitsmanagement: vitaliberty auf der Zukunft Personal 2017
19.09.2017 | vitaliberty GmbH

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie