Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ferdinand-Braun-Institut stellt mehrere Neuentwicklungen auf der Laser Optics Berlin vor

08.03.2010
Halbleiterlaser setzen sich im Hinblick auf Zuverlässigkeit, Miniaturisierung, hohe Leistungen und hohe Effizienzen in immer mehr Laseranwendungen durch. Branchen­treffpunkt und Leistungsschau ist die Laser Optics Berlin, die vom 22. - 24. März 2010 unter dem Funkturm stattfindet.

Der begleitende Kongress steht für die enge Verzahnung von Wissenschaft und Anwendung in der Laser-Optik-Branche. An seinem Messestand (Halle 18, Stand 404) wie auch auf dem Kongress stellt das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) verschiedene Neuentwicklungen vor:

Kompake Lasersysteme für Displays

Auf dem Weg zum Laserfernsehen oder hin zu deutlich kleineren Laserdisplays für Planetarien und Flugsimulatoren sind die Wissenschaftler am FBH ein großes Stück vorangekommen: Das Aufbaukonzept eines hybriden Systems wurde bei 488 Nanometern (nm), einer etablierten Wellenlänge für verschiedene spektroskopische Anwendungen aber auch für Displays, erfolgreich demonstriert. Mittels Frequenz­verdoppelung wird dabei infrarotes Laserlicht bei 976 nm über einen nichtlinearen Kristall in blaues Licht umgewandelt – die Wellenlänge halbiert sich dadurch auf 488 nm. Bislang brauchte dieses Konzept in etwa einen Quadratmeter Laborfläche, nun wurde es auf die Größe einer Streichholzschachtel miniaturisiert. Das Modul läuft temperatur- und wellenlängenstabil und ist ein Demonstrator, der flexibel auf alle benötigten Wellenlängen übertragen werden kann.

Bei der Miniaturisierung des Laboraufbaus – das Modul misst nur ca. 25x10x50 mm – wird die Ausgangsleistung von einem Watt konstant gehalten – der Experte spricht von rauscharmer Dauerstrichleistung. Solche hybriden Diodenlasersysteme sind aus unterschiedlichen Baugruppen aufgebaut, bei denen die hochpräzise Montage der Mikrooptiken eine besondere Herausforderung darstellt. Die etwa erbsengroßen Linsen müssen mit einer Genauigkeit von besser als ein Mikrometer (µm) justiert werden. Das verlangt eine außerordentliche Präzision in „haarigen“ Größenordnungen, denn 1 µm entspricht in etwa einem Fünfzigstel des Durchmessers eines menschlichen Haares. Ein zweiter kritischer Punkt ist das thermische Management des Aufbaus. Der Kristall, der für die Frequenzverdopplung und damit für die Umwandlung des Laserstrahls in sichtbares Licht benötigt wird, arbeitet bei 50°C, der Laser jedoch bei Zimmertemperatur. Beide Temperaturen müssen strikt voneinander getrennt werden: Der Laser darf sich nicht erwärmen und die Temperatur des Kristalls muss auf 0,1°C genau eingestellt werden, da schon kleinste Abweichungen zu Leistungseinbußen von mehr als 50% führen würden.

Im nächsten Schritt steht nun die Übertragung des Konzepts auf Laser an, die blaues Licht bei einer Wellenlänge von 460 nm und grünes Licht bei 530 nm emittieren – dies sind die für die Displaytechnologie optimalen Wellenlängen. Die für den Aufbau benötigten Pumplaser mit Wellenlängen von 920 nm für blaue bzw. 1060 nm für grüne Laser wurden bereits entwickelt.

Pulspicker für ultrakurze Lichtimpulse

Eine weitere Neuentwicklung aus dem FBH ist der Pulspicker, ein neuartiges Konzept, bei dem einzelne Pulse aus den hochfrequenten Impulsfolgen eines Kurzpulslasers „herausgepickt“ werden können. Lasersysteme mit Pulspickern können beispielsweise in der Lasermaterialbearbeitung, bei biomedizinischen Untersuchungstechniken auf der Basis der Fluoreszenzspektroskopie und der Laserentfernungsmessung eingesetzt werden. Mit dem Pulspicker steht ein kompaktes Modul auf rein halbleitertechnologischer Basis zur Verfügung, das ultrakurze Lichtimpulse kleiner als zehn Pikosekunden mit nahezu beliebigen Folgefrequenzen vom Kilohertz- bis in den 100-Megahertz-Bereich bereitstellen kann. Das Konzept nutzt sowohl ein maßgeschneidertes Design für die Lichtführung aus der Technologie für Hochleistungsdiodenlaser als auch optimierte Hochfrequenz (HF)-Komponenten der Galliumnitrid-Elektronik. Der Pulspicker vereint somit in idealer Weise HF-Technologie und Elektronik mit der Entwicklung von Hochleistungsdiodenlasern, beides sind Kernkompetenzen am Ferdinand-Braun-Institut.

Hocheffiziente Diodenlaser mit extrem schmalem Spektrum

Das FBH stellt auf der Laser Optics Berlin zudem hocheffiziente und leistungsstarke Diodenlaser vor. So wurden DFB-Breitstreifen-Diodenlaser entwickelt, deren optische Leistung gegenüber den leistungsstärksten bisher verfügbaren DFB-Lasern mehr als verdoppelt wurde. Weltweit erstmalig wurden aus einem 100 µm breiten Laserstreifen Leistungen von mehr als 10 Watt in einem Spektralbereich deutlich kleiner als ein Nanometer erzielt. Die Laser besitzen zugleich eine hohe Konversionseffizienz: Der Anteil an elektrischer Energie, der in Licht umgewandelt wird, beträgt bis zu 58 Prozent und liegt damit knapp unter dem konventioneller Hochleistungsdiodenlaser, die jedoch typischerweise eine deutlich größere spektrale Breite von 2 bis 3 nm haben. Die neuartigen Diodenlaser sind eine kostengünstige Option für Laserstrahlquellen mit hoher optischer Leistung und schmalem Spektrum. Sie erschließen Anwendungsmöglichkeiten für neue Hochleistungslasersysteme, die Wellenlängenmultiplex zur Verbesserung der Strahlqualität nutzen – dabei können verschiedene Wellenlängen über ein wellen­längenselektives Element besser auf einen Punkt überlagert werden, die Systeme werden leistungsfähiger. Eine weitere Anwendungsmöglichkeit sind besonders effiziente Pumplaser mit einer schmalen spektralen Linienbreite. Pumplaser werden als Anregungs­laser von Faser- und Festkörperlasern beispielsweise in der Materialbearbeitung benötigt.

Petra Immerz
Communications Manager

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4
12489 Berlin
Tel. +49.30.6392-2626
Fax +49.30.6392-2602
E-Mail petra.immerz@fbh-berlin.de

Hintergrundinformationen - das FBH
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der welt­weit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikro­wellen­technik und Opto­elektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Inno­vationen in den gesell­schaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Laser­systeme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwen­dungsfelder reichen von der Medizin­technik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satelliten­kommu­nikation. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktionale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunk­systeme und Komponenten zur Erhöhung der Kfz-Fahrsicherheit. Kompakte atmosphärische Mikro­­wellen­plasmaquellen mit Nieder­spannungsversorgung entwickelt es für medizinische Anwendungen, etwa zur Behandlung von Hauterkrankungen. Die enge Zusammen­arbeit des FBH mit Industriepartnern und Forschungs­einrichtungen garantiert die schnelle Umsetzung der Ergeb­nisse in praktische Anwendungen. Das Institut beschäftigt 230 Mitarbeiter und hat einen Etat von 21 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V. und ist Mitglied der Leibniz-Gemeinschaft.

Petra Immerz | FBH Berlin
Weitere Informationen:
http://www.fbh-berlin.de

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Biophotonische Innovationen auf der LASER World of PHOTONICS 2017
26.06.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten
26.06.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive