Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

TU Bergakademie Freiberg präsentiert Biomaterialien und Feuchtesensor auf der Materialica in München

25.09.2001


Mit der Entwicklung und Optimierung von Biowerkstoffen beschäftigen sich Wissenschaftler am Institut für Keramische Werkstoffe (IKW) der TU Bergakademie Freiberg. Im Mittelpunkt der Forschungen stehen dabei u.a. Titanlegierungen. Sie gehören zu den wenigen metallischen Werkstoffen, die eine sehr gute Verträglichkeit mit dem menschlichen Körper aufweisen und finden aufgrund ihrer mechanischen Eigenschaften für Prothesen Anwendung, die lasttragende Funktionen erfüllen müssen, z. B. im Dentalbereich, für Knie- und Hüftendoprothesen.
Die durchschnittliche Verweilzeit von Hüftendoprothesen im menschlichen Körper liegt derzeit bei 10 bis 15 Jahren. Um jedoch auch jüngere Patienten mit einer Prothese zu versorgen oder der steigenden Lebenserwartung gerecht zu werden besteht weiterer Entwicklungsbedarf. Ziel ist dabei die Erhöhung der Langzeitbeständigkeit von Prothesen. Aktuelle Forschungsarbeiten am Freiberger IKW befassen sich deshalb mit der Oberflächenveredlung von Titanwerkstoffen und CoCr-Legierungen durch geeignete keramische Schichten. Hierbei werden Plasmaverfahren angewendet, aber auch Abscheidemethoden wie Sol-Gel-Technik oder Elektrophorese sind von hoher Relevanz.
Zur Erhöhung der Verschleißbeständigkeit von Hüftgelenkskugeln wird bspw. in Zusammenarbeit mit industriellen Forschungseinrichtungen an der Optimierung von Diamant-ähnlichen Kohlenstoffschichten (Diamond-like Carbon: DLC) gearbeitet. DLCs gehören zu den bioinerten Werkstoffen. Um die vorteilhaften Eigenschaften der harten, elastischen und verschleißbeständigen Kohlenstoffschichten zum Tragen zu bringen, sind exakte Anpassungen der Schichtstruktur an die konkreten Belastungen der Implantatoberfläche notwendig. Besonders im stark tribologisch beanspruchten Hüftgelenk konnten sich bisher DLC-Beschichtungen noch nicht durchsetzen. Problematisch sind hier Schichtabplatzungen, die zur katastrophalen Schädigung der Gelenkreibpaarung führen.
Ein weiterer Schwerpunkt auf dem Gebiet der Biomaterialien am Institut ist die Herstellung, Charakterisierung und Optimierung von faserverstärkter Biokeramik auf Hydroxylapatit-Basis. Natürlicher Knochen hat die Fähigkeit, Dichte und Gefüge an die äußeren Belastungen anzupassen. Infolge mechanischer Belastung werden Knochenzellen zum Knochenauf- und -umbau angeregt. Beim Knochenaufbau erfolgt über mehrere Zwischenschritte die Formation einige Mikrometer dicker Knochenlammellen, die konzentrisch um ein zentrales Blutgefäss entstehen. Trotz des für Keramiken typischen spröden Verhaltens ermöglicht der spezielle Gefügeaufbau des Knochenapatits ein schadenstoleranteres Verhalten. Der mineralische Anteil in Form dieses Knochenapatites beläuft sich auf ca. 70 Gewichtsprozent. Ein weiterer Bestandteil sind Kollagenfasern, die bei mechanischer Belastung Zugkräfte aufnehmen. Knochen ist demzufolge ein biologischer Verbundwerkstoff bestehend aus der gefügeoptimierten, keramischen Komponente Knochenapatit, den fasrigen Kollagenen sowie weiteren nicht-kollagenen Proteinen und Körperflüssigkeit. Die Fertigung von faserverstärkten Biokeramiken auf Hydroxylapatit-Basis beschäftigt sich mit der synthetischen Nachempfindung des natürlichen Knochenaufbaus. Aufgrund der chemischen und strukturellen Ähnlichkeit dieser neuartigen Biomaterialien und des natürlichen Knochens wird eine deutliche Verbesserung der Bioverträglichkeit und schließlich der Langzeitbeständigkeit erwartet.

Kontakt:
TU Bergakademie Freiberg
Fakultät für Werkstoffwissenschaften und Werkstofftechnologie
Institut für Keramische Werkstoffe
Frau Dr. Annett Dorner-Reisel
Tel.: 03731/39-2203
E-Mail: dorner@anw.ikw.tu-freiberg.de

Einen keramischen Feuchtesensor zur Messung der Luftfeuchte entwickelten Wissenschaftler am Institut für keramische Werkstoffe der TU Bergakademie Freiberg. Dieser Sensor, 6 mal 8 mm groß, besteht aus einem keramischen Substrat (Aluminiumoxid), auf das in Dickschichttechnik sowohl die kammartig strukturierten Elektroden als auch die sensitive keramische Schicht aufgebracht werden. Die 40 µm dicke sensitive Schicht ist hochporös mit einem großen Anteil Poren im Bereich bis ca. 10 Nanometer. Der Sensor arbeitet nach dem kapazitiven Messprinzip, d. h. bei Veränderung der Feuchte wird Wasser von der keramischen Schicht adsorbiert bzw. desorbiert, was aufgrund der hohen Dielektrizitätskonstante des Wassers eine messbare Kapazitätsänderung in der Schicht bewirkt. Charakteristisch für den Sensor ist ein Arbeitsbereich von 10 bis 80% relativer Feuchte bei Raumtemperatur. Zur Auswertung der Messsignale wird er mit einem ASIC ausgestattet.
Gegenwärtig laufen am Freiberger Institut Forschungsarbeiten zur Entwicklung eines Feuchtesensors, der bei Temperaturen bis 200°C messen kann. Eingesetzt werden könnte dieser Sensor bei metallurgischen Prozessen, um beispielsweise die Feuchte in Verbrennungsgasen zu bestimmen.
Beide Projekte werden vom Bundesministerium für Bildung und Forschung (BMBF) als Verbundvorhaben mit Industriepartnern gefördert.
Kontakt:
Institut für Keramische Werkstoffe
Frau Rosemarie Dittrich
Tel.: 03731/39-2644, Fax: 03731/39-3662
E-Mail: dittrich@anw.ikw.tu-freiberg.de

Präsentiert werden die Forschungsprojekte des Institutes für Keramische Werkstoffe der TU Bergakademie Freiberg vom 1. bis 4. Oktober 2001 auf der Münchner Messe MATERIALICA in der Halle C1 am Stand C1.204.

Katrin Apenburg | idw

Weitere Berichte zu: Biomaterialien Feuchtesensor Keramisch

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht Biophotonische Innovationen auf der LASER World of PHOTONICS 2017
26.06.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten
26.06.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive