Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Drei Neuentwicklungen durchdringen die Mikrowelt

07.05.2003


Drei Neuentwicklungen durchdringen die Mikrowelt

Forscher des Zentrums für Mikrotechnologien der TU Chemnitz und des Fraunhofer-Institutes für Zuverlässigkeit und Mikrointegration (IZM) stellen vom 13. bis 15. Mai 2003 auf der "Sensor 2003" in Nürnberg (Messezentrum, Halle 7, Stand 652 sowie Gemeinschaftsstand "Forschung für die Zukunft", Stand 345/446) drei Sensorsysteme vor: ein Miniatur- Infrarotspektrometer zur Messung von Molekülspektren von Feststoffen bis hin zu Flüssigkeiten, ein Scannersystem mit ablenkbarem Mikrospiegel sowie einen Vibrationssensor, der unerwünschte Schwingungen zum Beispiel an Maschinen aufspürt. Laut Auskunft der Veranstalter werden auf der Messe etwa 15.000 Fachbesucher erwartet.

Portables Miniatur-Infrarotspektrometer für vielseitige Messungen

Das portable Infrarot-Spektrometer dient der Diagnose und Charakterisierung etwa von Feststoffen, Dünnfilmen, Pasten und Flüssigkeiten mittels nicht invasiver und schneller Messung von Molekülspektren. Auch Online- Messungen sind möglich. Dieses kostengünstige Spektrometer arbeitet nach dem Prinzip so genannter dispersiver Gitterspektrometer. Die Hauptkomponente des Instruments bildet ein Mikrospiegel, durch den eine spezifische Wellenlängen-Projizierung des analysierten Lichts auf den Ausgangsspalt realisiert wird.

Mikrospiegel für Scan-Applikationen

In Nürnberg vorgestellt wird auch ein aus einem Mikrospiegel bestehender Scanner, der Muster einlesen kann (z. B. Barcode-Streifen), die dann auf einem Bildschirm angezeigt werden können. Angewendet wird der Scanner beispielsweise in der Qualitätsprüfung sowie für die Erkennung von Hindernissen und Partikeln. Denkbar sind solche Ablenksysteme auch für optische Messungen, optische Datenübertragungen oder für das Laser- Fernsehen, das ohne Bildschirm auskommt und die Fernsehbilder stark vergrößert an die Wand projiziert. Die dafür in Chemnitz entwickelten winzigen Mikrospiegel sind an zwei Stellen beweglich gelagert und können durch das Anlegen einer Spannung ausgelenkt werden. Mit Hilfe verschiedener Spiegeldesigns können auch unterschiedliche Parameter erreicht werden. Auf spezielle Kundenanforderungen kann so relativ einfach reagiert werden. Im Zentrum für Mikrotechnologien der TU Chemnitz wurden in den vergangenen Monaten die Oberflächenrauheit, die Ebenheit und die Reflektionsfähigkeit der als Prototypen gefertigten Spiegelelemente stark verbessert.

Vibrationssensor, der unerwünschte Schwingungen aufspürt

Wenn Maschinen, Motoren oder Pumpen unerwartet anfangen zu schwingen, ist meist eine Unwucht oder ein kleiner Riss in einem Bauteil die Ursache. Um diese unerwünschten Schwingungen frühzeitig zu erkennen, wurde ein neuartiger Vibrationssensor entwickelt. Der zweidimensionale, frequenzselektive Sensor wurde mittels einer Silizium-Ätztechnologie - dem trockenen reaktiven Ionenätzen - hergestellt. Wenn bei unerwünschten Schwingungen die kammähnlichen winzigen Strukturen des Sensors beim Ineinandergreifen vorgegebene Grenzwerte überschreiten, wird ein "Warnsignal" erzeugt. Eine spezielle Elektronik ermöglicht die Auswertung und Verstärkung dieser Signale und ist hybrid integriert in einem kleinen Metallgehäuse. Das komplette System ist mit Montageadapter nur 3 mal 3 mal 3 Zentimeter groß und kann einfach an die zu beobachtenden Geräte montiert werden.

Dipl.-Ing. Mario Steinebach | Technische Universität Chemnitz
Weitere Informationen:
http://www.tu-chemnitz.de

Weitere Berichte zu: Mikrospiegel Mikrotechnologie

Weitere Nachrichten aus der Kategorie Messenachrichten:

nachricht »Lasertechnik Live« auf dem International Laser Technology Congress AKL’18 in Aachen
23.02.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Empa zeigt «Tankstelle der Zukunft»
23.02.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Messenachrichten >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics