Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Röntgenverfahren unterscheidet, was bisher gleich aussah

23.07.2010
Neue Methode bildet Grundlage für grossflächige Nutzung eines Röntgenverfahrens, mit dem Gewebe unterschieden werden kann, das in herkömmlichen Röntgenbildern gleich aussieht.

Klassische Röntgenbilder können Knochen gut von Weichgewebe unterscheiden – Muskeln, Knorpel, Sehnen oder Weichteiltumore sehen in den Bildern aber fast gleich aus. Mit dem Phasenkontrastverfahren, wie es vor wenigen Jahren am Paul Scherrer Institut entwickelt wurde, lassen sich Röntgenbilder erzeugen, in denen auch diese Gewebearten klar unterscheidbar sind.

Nun haben Forschende des Paul Scherrer Instituts und der Chinesischen Akademie der Wissenschaften das Verfahren so weiterentwickelt, dass es in Zukunft so einfach zu handhaben sein wird wie gewöhnliche Röntgenaufnahmen. Die Forschenden erwarten, dass das Verfahren zukünftig helfen wird, in der Arztpraxis Tumore zu erkennen oder am Flughafen gefährliche Gegenstände im Gepäck sichtbar zu machen. Über ihre Ergebnisse berichten die Forschenden diese Woche in der Online-Ausgabe der Zeitschrift der Amerikanischen Akademie der Wissenschaften (PNAS – Proceedings of the National Academy of Sciences of the United States of America).

Im gewöhnlichen Röntgenbild kann man die Knochen besonders deutlich sehen, weil sie Röntgenlicht stärker abschwächen als umliegendes Gewebe – das Röntgenbild ist so gewissermassen ein Schattenbild des Körperinneren. Verschiedene Arten von Weichgewebe schwächen Röntgenlicht aber in ungefähr gleichem Masse ab und sind dadurch nur schwer zu unterscheiden.

Verschobene Phase zeigt Strukturen

Um diese Gewebearten doch zu unterscheiden, machen sich die Forschenden zunutze, dass sich die Gewebe oftmals in einer anderen Eigenschaft unterscheiden – in ihrer Dichte, die auch bestimmt, wie schnell das Röntgenlicht darin vorankommt. Durch die unterschiedliche Dichte kommt es zu einer sogenannten Phasenverschiebung des Röntgenlichts.

Licht ist ja eine Welle. Man kann sich einen Lichtstrahl so denken, dass immer abwechselnd Wellenberge und Wellentäler aufeinanderfolgen. Nun kann man sich vorstellen, dass mehrere Lichtstrahlen parallel an einer Röntgenlichtquelle loslaufen – und zwar „in Phase“, also so, dass etwa die Wellenberge aller Wellen nebeneinander liegen. Laufen die Lichtstrahlen nun alle durch ein Gewebe, das an verschiedenen Orten eine unterschiedliche Dichte aufweist, sind sie danach nicht mehr in Phase, weil sie verschieden schnell durch das Gewebe gelaufen sind. Diesen Phasenunterschied kann man nutzen, um die Struktur des Gewebes zu bestimmen.

Neue Methode auch für die Arztpraxis

Um aus den Phasenunterschieden ein Bild der Gewebestruktur zu bekommen, schicken die Forschenden das Licht durch ein feines Gitter mit Abständen von einigen tausendstel Millimetern, sodass sich die verschiedenen Strahlen überlagern. Aus der Überlagerung bestimmen sie dann die Struktur in einer bisher unerreichten Genauigkeit. Das schweizerisch-chinesische Forscherteam hat nun das Verfahren „Reverse Projection Method – RP“ erarbeitet, mit dem man die Phasenverschiebungen auf eine sehr einfache Weise bestimmen kann.

„Dadurch wird man Phasenkontrastbilder so einfach aufnehmen können wie heute normale Röntgenbilder“, erklärt Marco Stampanoni, Professor für Röntgenmikroskopie am Institut für Biomedizinische Technik der ETH Zürich und Projektleiter am PSI. „Diese Ergebnisse sind ein wichtiger Schritt zur weiten Nutzung der Phasenkontrastmethode auf Gebieten wie Medizin, zerstörungsfreie Materialuntersuchung oder Sicherheitstechnik, weil sie ähnliche Untersuchungsbedingungen und Algorithmen nutzt wie vorhandene Anlagen.“

Text: Paul Piwnicki

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und Umweltforschung. Mit 1300 Mitarbeitenden und einem Jahresbudget von rund 260 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt:
Prof. Dr. Marco Stampanoni, Institut für Biomedizinische Technik der ETH Zürich und Labor für Makromoleküle und Bioimaging am Paul Scherrer Institut, 5232 Villigen PSI, Telefon: +41 (0)56 310 4724 oder +41 (0) 79 874 92 22; E-Mail: marco.stampanoni@psi.ch
Originalveröffentlichung:
Low-dose, simple, and fast grating-based X-ray phase-contrast imaging
Peiping Zhu, Kai Zhang, Zhili Wang, Yinjin Liu, Xiaosong Liu, Ziyu Wu, Samuel A. McDonald, Federica Marone, and Marco Stampanoni

PNAS Early Edition, July 19, 2010; DOI: 10.1073/pnas.1003198107

Dagmar Baroke | idw
Weitere Informationen:
http://www.psi.ch/media/neues-roentgenverfahren

Weitere Nachrichten aus der Kategorie Medizintechnik:

nachricht Mikroskop im Kugelschreiberformat: Auf dem Weg zur endoskopischen Krebsdiagnose
28.04.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Highspeed-Laser erkennt Krebs in zwei Minuten
25.04.2017 | University of Hong Kong

Alle Nachrichten aus der Kategorie: Medizintechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie