Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Ersatzstoffe und Implantate für Knochen, die nicht heilen wollen

16.06.2010
Deutsche Forschungsgemeinschaft bewilligt 7,4 Millionen Euro für neuen Sonderforschungsbereich/Transregio

Die Deutsche Forschungsgemeinschaft (DFG) hat einen neuen Sonderforschungsbereich/Transregio (SFB/TRR) mit dem Thema „Werkstoffe für die Hartgeweberegeneration im systemisch erkrankten Knochen“ an den Universitäten Heidelberg, Gießen und Dresden bewilligt. Die erste Förderperiode beginnt im Juli 2010 und läuft über 4 Jahre. Das Fördervolumen von 7,4 Millionen Euro (ohne Programmpauschale) verteilt sich auf die einzelnen Universitäten in etwa gleichmäßig.

Ziel des SFB/TRR 79 ist es, neue Knochenersatzstoffe und Implantatwerkstoffe zu entwickeln, die speziell an die Verhältnisse im kranken Knochen angepasst sind. Denn bei zugrundeliegenden Krankheiten, wie z.B. dem Multiplen Myelom (einer bösartigen Erkrankung des blutbildenden Systems), Knochenmetastasen oder der Osteoporose, heilt der Knochen im Falle eines Bruchs nur sehr langsam oder gar nicht. Das stellt bei älteren Menschen und Tumorpatienten ein großes klinisches Problem dar. Die Bildung von mechanisch langfristig stabilem Knochengewebe führt zu einer Verbesserung der Lebensqualität und des Überlebens. Gleichzeitig ist eine etwaige Funktionalisierung der in den Knochen eingebrachten Biomaterialien (zum Beispiel zur lokalen Kontrolle der Tumorzellpopulation beim Multiplen Myelom) ein vielversprechender therapeutischer Ansatz.

Sprecher des SFB/TRR 79 am Standort Heidelberg ist Professor Dr. Hartmut Goldschmidt, Leiter der Sektion Multiples Myelom an der Medizinischen Universitätsklinik Heidelberg und dem Nationalen Centrum für Tumorerkrankungen (NCT). Neben der Biophysikalischen Chemie der Universität Heidelberg ist in Heidelberg außerdem das Deutsche Krebsforschungszentrum an dem neuen Sonderforschungsbereich beteiligt. „In unseren Teilprojekten wird es darum gehen herauszufinden, welche molekularen Mechanismen bei der Zerstörung und mangelhaften Heilung des Knochens ablaufen, wie wir diese Vorgänge mit bildgebenden Verfahren sichtbar machen können und wie die neu entwickelten Knochenersatzstoffe und beschichteten Implantate auf das umliegende Gewebe und die Knochenheilung einwirken. Alles das soll dazu beitragen, Diagnostik und Therapie der betroffenen Patienten zu verbessern. Insbesondere werden Myelompatienten in Zukunft hiervon profitieren“, erläutert Dr. Dirk Hose, stellvertretender Sprecher am Standort Heidelberg und Leiter des Labors für Myelomforschung an der Medizinischen Klinik des Universitätsklinikums Heidelberg.

Die Koordination für den gesamten Sonderforschungsbereich liegt bei der Justus-Liebig-Universität Gießen. Sprecher ist Professor Dr. Dr. Reinhard Schnettler, Direktor der Klinik und Poliklinik für Unfallchirurgie. Weitere Teilnehmer am SFB/TRR 79 sind die Technische Universität Dresden sowie das Leibniz-Institut für Festkörper- und Werkstoffforschung, das Leibniz-Institut für Polymerforschung und das Max-Planck-Institut für Chemische Physik fester Stoffe, alle ebenfalls in Dresden. Während in Dresden die neuen Werkstoffe und Biomaterialien entwickelt werden sollen, werden in Gießen schwerpunktmäßig geeignete Tiermodelle ausgearbeitet, um die Materialien testen zu können.

Multiples Myelom als Modellerkrankung

Im Mittelpunkt der Forschung stehen das Multiple Myelom und die systemische Knochenerkrankung Osteoporose, eine vor allem im Alter auftretende Verminderung der Knochensubstanz, die beide mit einem deutlich erhöhten Knochenbruchrisiko und einer verzögerten Heilung einhergehen. Das Multiple Myelom ist eine in der Regel unheilbare Krebserkrankung, die auf einer Vermehrung von Myelomzellen (einer bestimmten Art bösartig veränderter weißer Blutkörperchen) im Knochenmark beruht. Myelomzellen wie auch deren normales Gegenstück stehen in enger Interaktion mit anderen Zellpopulationen der Knochenmarkumgebung.

Eine Anhäufung von Myelomzellen verursacht Symptome und klinische Zeichen, die unter anderem zu einer Beeinträchtigung der Blutbildung und zu Knochensubstanzdefekten führen. Folgen sind Knochenschmerzen und -brüche, Blutarmut und Infektanfälligkeit. „Die neuen Knochenersatzstoffe sollen den Knochen stabilisieren, den Knochenstoffwechsel zur Heilung anregen und die Tumorzellen direkt im Knochen unter Kontrolle halten“, erklärt Professor Goldschmidt. „Schließlich sollen die Forschungsergebnisse zum Multiplen Myelom auf andere gut- und bösartige Knochenerkrankungen übertragen werden.“

Weitere Teilprojekte in Heidelberg beschäftigen sich mit folgenden Fragestellungen: Wie wirken beschichtete Implantatoberflächen auf das umliegende Gewebe im Bereich des Knochenbruchs? Wie beeinflussen Knochenersatzstoffe die Gefäßneubildung an der Bruchstelle und damit den Beginn einer Heilung? Wie sehen strukturelle Veränderungen des Knochens und Heilungsprozesse in modernen bildgebenden Verfahren aus? Welche Möglichkeiten gibt es, den Krankheitsverlauf besser zu kontrollieren und die Therapie zu individualisieren?

Ansprechpartner:
Prof. Dr. Hartmut Goldschmidt
Medizinische Klinik V
Im Neuenheimer Feld 410
69120 Heidelberg
Tel.: 06221 / 56 80 03
Fax: 06221 / 56 56 24
E-Mail: hartmut.goldschmidt@med.uni-heidelberg.de
Dr. med. Dirk Hose
Medizinische Klinik V
Im Neuenheimer Feld 410
69120 Heidelberg
Tel.: 06221 / 56 39 047
Fax: 06221 / 56 62 38
E-Mail: dirk.hose@med.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 7.600 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 40 Kliniken und Fachabteilungen mit ca. 2.000 Betten werden jährlich rund 550.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.400 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland.
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de
http://www.klinikum.uni-heidelberg.de/Multiples-Myelom.109010.0.html

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie