Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrocontainer aus Spinnenseide für die medizinische Diagnostik

09.09.2013
Die Biomedizin hat ein zunehmend starkes Interesse an Kapseln, die geeignet sind, um Enzyme darin einzuschließen. Dabei geht es einerseits um therapeutische Zwecke wie den sicheren Transport von Wirkstoffen, andererseits um die Verwendung von Enzymen im Rahmen medizinischer Diagnosen.

Einer Forschungsgruppe um Prof. Dr. Thomas Scheibel an der Universität Bayreuth ist es jetzt gelungen, aus Proteinen der Spinnenseide hochleistungsfähige Kapseln herzustellen, die erstmals zwei Funktionen gleichzeitig erfüllen: Sie schützen die Enzyme vor zersetzenden Proteasen; aber sie machen es möglich, die Aktivität der eingeschlossenen Enzyme von außen zu steuern und zu beobachten.


Mikroskopische Aufnahmen von Kapseln aus eADF4(C16) und NHS-Fluoreszein-markiertem eADF4(C16):

A) Lichtmikroskopische Aufnahme
B) Fluoreszenzmikroskopische Aufnahme
C) Überlagerung der beiden Aufnahmen

Der Messbalken in diesen drei Abbildungen entspricht einer Länge von 50 Mikrometern.

D) Aufnahme einer einzelnen Kapsel mit einem konfokalen Laserscanmikroskop

Der Messbalken entspricht hier einer Länge von 10 Mikrometern.

Aufnahmen: Dissertation Claudia Blüm, Lehrstuhl für Biomaterialien, Universität Bayreuth

Sicher verpackt, aber von außen steuerbar:
Verkapselte Enzyme eröffnen neue Möglichkeiten der Diagnose
Mit dieser Doppelfunktion eröffnen die Kapseln neue Perspektiven für die medizinische Diagnostik. So können beispielsweise geringste Mengen von schädlichen Inhaltsstoffen im Blut dadurch nachgewiesen werden, dass sie bei den eingeschlossenen Enzymen zu bestimmten Reaktionen führen, wenn sie in die Kapsel eindringen. Zugleich sind die im Blut enthaltenen Proteasen nicht in der Lage, die Kapseln zu durchdringen und die Enzyme zu spalten. „Die Kapseln, die wir aus künstlich hergestellter Spinnenseide entwickelt haben, sind schützende Container, die es gleichwohl erlauben, von außen auf die eingeschlossenen Enzyme gezielt einzuwirken und damit chemische Reaktionen zu steuern und nachzuweisen“, erklärt Prof. Scheibel. „Diese Effekte sind den besonderen Eigenschaften des von uns verwendeten Seidenproteins zu verdanken.
Medizinisch unbedenklich:
Ein neues Verfahren für die Herstellung stabiler Kapseln
In der Online-Ausgabe der Zeitschrift „Advanced Functional Materials“ berichtet das Forschungsteam, an dem auch Dr. Alfons Nichtl von der Roche Diagnostics beteiligt war, über die neue Entwicklung. Die Kapseln wurden aus einem künstlich hergestellten Spinnenseidenprotein, dem Protein eADF4(C16), gebildet. Hierfür haben die Bayreuther Forscher ein neues Verfahren entwickelt: Für die Formung der Kapseln wurde ein ungiftiges, in medizinischer Hinsicht unbedenkliches Silikonöl verwendet; in einem weiteren Schritt erhielten die Kapseln mithilfe einer Nachbehandlung mit Ethanol eine hohe strukturelle Festigkeit.

Die daraus resultierenden runden Kapseln sind mit bloßem Auge nicht zu erkennen. Denn sie haben einen Durchmesser zwischen 1 und 30 Mikrometern, also zwischen 0,001 und 0,03 Millimetern. Ihre mechanische Festigkeit ist hoch. Sie liegt zwischen 0,7 und 3,0 Gigapascal und übertrifft damit die Festigkeit von Kapseln aus vielen anderen infrage kommenden Materialien. Zudem zeichnen sich die Kapselmembranen aus Spinnenseide, wie sich in den Bayreuther Experimenten herausstellte, durch einen weiteren Vorteil aus: Sie haben eine deutlich geringere Porosität als beispielsweise Kapseln, die aus Seidenproteinen der Raupen des Maulbeerspinners hergestellt werden. Daher sind Substanzen unterhalb eines bestimmten molekularen Gewichts (27 kDa) nicht imstande, aus der Kapsel nach draußen zu entweichen.

β-Galactosidase als Modellenzym:
Spinnenseide schützt vor zersetzenden Proteasen
Um herauszufinden, wie gut sich diese Kapseln für biomedizinische Anwendungen eignen, haben Prof. Scheibel und seine Mitarbeiter auf das Enzym β-Galactosidase zurückgegriffen, das in allen Lebewesen vorkommt und an deren Stoffwechsel mitwirkt. Dieses Enzym wurde in den Spinnenseidenkapseln eingeschlossen, ohne dass es währenddessen mit den Kapselwänden verklebte oder in seiner molekularen Struktur verändert wurde. Protease-Molekülen, die dieses Enzym normalerweise sehr schnell zersetzen, gelang es nicht, die Seidenkapseln von außen anzugreifen und sich einen Weg ins Innere zu bahnen.
Mit spektroskopischen Verfahren sichtbar gemacht:
Die gezielte Aktivierung eingeschlossener Enzyme
Zugleich hat die Forschungsgruppe modellhaft zeigen können, wie sich die Aktivität des eingeschlossenen Enzyms von außen steuern lässt. Im Inneren der Kapsel wurden β-Galactosidase-Fragmente platziert, die jeweils ein Dimer bilden, also aus zwei gleichen Molekülteilen bestehen. In dieser Struktur ist das Enzym inaktiv. Komplementäre -Peptide sind in der Lage, von außen ins Innere der Kapsel einzudringen und an die β-Galactosidase-Fragmente zu binden. Diese bilden daraufhin jeweils ein Tetramer, also eine Struktur aus vier gleichen Molekülteilen. In dieser Struktur ist das Enzym aktiv. Indem also die Forscher das Peptid in das Medium einbringen, das die Kapsel umgibt, lösen sie innerhalb der Kapsel die Aktivierung des Enzyms aus.

Diese Art der Aktivierung der β-Galactosidase wird als α-Komplementation bezeichnet. Sie lässt sich mit Hilfe einer spektroskopisch nachweisbaren Farbstoffreaktion, die ebenfalls von außen initiiert wird und innerhalb der Kapseln abläuft, präzise beobachten. „Die neuen Kapseln aus Spinnenseide sind daher Schutzcontainer, in denen sich enzymatische Reaktionen gezielt herbeiführen und untersuchen lassen. Sie ermöglichen grundsätzlich eine Vielzahl technischer und medizinischer Anwendungen und sind deshalb ein hochwillkommenes Instrument für die biomedizinische Forschung“, resümiert Prof. Scheibel die bisherigen Forschungsergebnisse.

Veröffentlichung:

Blüm, C., Nichtl, A. and Scheibel, T. (2013),
Spider Silk Capsules as Protective Reaction Containers for Enzymes.
Advanced Functional Materials. DOI: 10.1002/adfm.201302100
Article first published online: 3 Sep 2013
Ansprechpartner:
Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl Biomaterialien
Fakultät für Ingenieurwissenschaften
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de
http://www.uni-bayreuth.de/presse/images/2013/243/

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Sind Epilepsie-Patienten wetterfühlig?
23.05.2017 | Universitätsklinikum Jena

nachricht Dual-Layer Spektral-CT: Bessere Therapieplanung beim Bauchspeicheldrüsenkrebs
18.05.2017 | Deutsche Röntgengesellschaft e.V.

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten