Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hepatitis B-Virusinfektion: Abbau viraler DNA im Zellkern eröffnet neue Behandlungsmöglichkeiten

21.02.2014
Wie die virale DNA des Hepatitis B-Virus (HBV) im Zellkern von Leberzellen abgebaut und das Virus damit eliminiert werden kann, haben Wissenschaftler des Helmholtz Zentrums München und der Technischen Universität München herausgefunden.

Viren wie HBV können persistieren, indem sie ihr Erbgut (DNA) im Zellkern deponieren. Dort wird die DNA im Normalfall nicht abgebaut und antivirale Medikamente können diese Viren daher nicht eliminieren.

Mit dem neu entdeckten Mechanismus könnte dies jedoch möglich werden - ohne dabei die infizierte Zelle in der Leber zu schädigen. Damit eröffnen sich jetzt neue therapeutische Möglichkeiten, berichten die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift ‚Science‘.

Obwohl man vorbeugend impfen kann, leiden derzeit weltweit nach Angaben der Weltgesundheitsorganisation (WHO) mehr als 240 Millionen Menschen an einer chronischen Hepatitis-B-Infektion. Sie haben ein hohes Risiko, eine Leberzirrhose oder sogar Leberkrebs zu entwickeln.

Allein in Deutschland sind mehr als ein halbe Million Menschen betroffen. Verfügbare antivirale Medikamente können das Hepatitis B-Virus zwar kontrollieren, es aber nicht vollständig eliminieren. Dies hat zur Folge, dass das HBV in der Leber des Patienten wieder reaktiviert wird, sobald die Behandlung abgesetzt wird.

Grund dafür ist die im Zellkern „versteckte“ Virus-DNA (cccDNA: covalently closed circular DNA). Diese legt das Virus in mehreren Kopien im Kern infizierter Leberzellen (Hepatozyten) ab und schützt sich so vor zerstörerischen Einflüssen. Die cccDNA dient als Vorlage für viruseigene Proteine und neue Virusgenome.

Ein internationales Wissenschaftlerteam um Prof. Mathias Heikenwälder und Prof. Ulrike Protzer, Institut für Virologie des Helmholtz Zentrums München und der Technischen Universität München, hat nun einen Weg gefunden, das virale Erbgut gezielt im Zellkern der Leberzellen anzugreifen und zu eliminieren – ohne dabei die Wirtszelle zu schädigen.

„Der von uns beschriebene Abbau viraler DNA im Zellkern stellt einen wichtigen Mechanismus in der Virusabwehr dar“, sagt Protzer. „Zudem bieten die Ergebnisse erstmals die Möglichkeit, Medikamente zu entwickeln, die Hepatitis B heilen können.“

Die Wissenschaftler haben entdeckt, dass neben Interferonen (Abwehrstoffen des Immunsystems) auch eine Aktivierung des Lymphotoxin-β-Rezeptors in der Wirtszelle bestimmte Proteine fördert und in ihrer Funktion so unterstützt, dass sie virale ccc-DNA chemisch modulieren und abbauen. Dadurch kann das Virus nicht reaktiviert werden. Ein Wiederausbruch der Erkrankung wird somit verhindert – auch nach Behandlungsende. Das Erbgut der Wirtszelle selbst, also der Leberzelle, wird von den Proteinen dagegen nicht beeinflusst. „Mit der Aktivierung des Lymphotoxin-ß Rezeptors haben wir – auch kombiniert mit bereits verfügbaren Wirkstoffen – ein vielversprechendes neues Therapiekonzept in der Hand“, erklärt Heikenwälder.

An der Publikation beteiligt sind neben dem Helmholtz Zentrum München und der Technischen Universität München (TUM) das Klinikum rechts der Isar der TUM sowie die Universitätskliniken Düsseldorf, Hamburg , Mainz und München. Internationale Partner aus Belgien, Frankreich, den USA und der Schweiz haben ebenfalls beigetragen.

Gefördert wurden die Forschungsarbeiten durch das Deutsche Zentrum für Infektionsforschung (DZIF).

Weitere Informationen

Original-Publikation:
Lucifora, J. et al. (2014), Specific and Non-Hepatotoxic Degradation of Nuclear Hepatitis B Virus cccDNA. Science, doi: 10.1126/science.1243462

Link zur Fachpublikation: http://www.sciencemag.org/content/early/2014/02/19/science.1243462

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.200 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören.www.helmholtz-muenchen.de

Das Institut für Virologie (VIRO) untersucht Viren, die Menschen chronisch infizieren und lebensbedrohliche Krankheiten hervorrufen können. Der Fokus liegt auf dem AIDS-Erreger HIV, endogenen Retroviren, die in unserer Keimbahn integriert sind, sowie Hepatitis-B- und C-Viren, die Leberzirrhose und hepatozelluläre Karzinome verursachen. Molekulare Studien identifizieren neue diagnostische und therapeutische Konzepte, um diese Virus-Erkrankungen zu verhindern und zu behandeln bzw. die Entstehung von virusinduzierten Tumoren zu vermeiden.

Die Technische Universität München (TUM) ist mit rund 500 Professorinnen und Professoren, 10.000 Mitarbeiterinnen und Mitarbeitern und 36.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaft. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Niederlassungen in Brüssel, Kairo, Mumbai, Peking und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel und Carl von Linde geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. www.tum.de

Im Deutschen Zentrum für Infektionsforschung (DZIF) entwickeln bundesweit mehr als 150 Wissenschaftler aus 32 Institutionen gemeinsam neue Ansätze zur Vorbeugung, Diagnose und Behandlung von Infektionskrankheiten. Ziel ist die sogenannte Translation: die schnelle, effektive Umsetzung von Forschungsergebnissen in die klinische Praxis. Damit bereitet das DZIF den Weg für die Entwicklung neuer Impfstoffe, Diagnostika und Medikamente gegen Infektionen. www.dzif.de.

Ansprechpartner für die Medien
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-2238 - Fax: 089-3187-3324 - E-Mail: presse@helmholtz-muenchen.de
Fachlicher Ansprechpartner
Prof. Ulrike Protzer, Institut für Virologie, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) und TU München, Trogerstr. 30, 81735 München - Tel.: 089-4140-6886 - E-Mail: protzer@helmholtz-muenchen.de; protzer@tum.de
Weitere Informationen:
http://www.sciencemag.org/content/early/2014/02/19/science.1243462
http://www.helmholtz-muenchen.de
http://www.tum.de
http://www.dzif.de

Susanne Eichacker | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-muenchen.de

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Stoßlüften ist besser als gekippte Fenster
29.03.2017 | Technische Universität München

nachricht Dimethylfumarat – eine neue Behandlungsoption für Lymphome
28.03.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten