Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Blutkrebs: Schlechtere Prognose durch genetische Vielfalt der Tumorzellen

26.09.2013
Verluste, Austausche oder Vervielfältigungen ganzer Chromosomen oder Teilen davon kommen bei Blutkrebs wie der akuten myeloischen Leukämie (AML) häufig vor.

Oft finden sich im Blut der Patienten verschiedene „Tochterklone“ von Krebszellen, deren Chromosomendefekte voneinander abweichen. Wissenschaftler im Deutschen Krebsforschungszentrum und den Universitätsklinika Heidelberg und Dresden wiesen jetzt erstmals bei der AML nach, dass das Vorhandensein von Tochterklonen einen ungünstigen Verlauf der Erkrankung signalisiert.


Knochenmarksausstrich einer akuten myeloischen Leukämie.
Alwin Krämer, Deutsches Krebsforschungszentrum

Tumoren gelten als „Klone“, als gemeinsame Abkömmlinge einer einzelnen, entarteten Zelle. Ganz so uniform, wie man es von einem „Klon“ erwarten könnte, geht es bei Krebszellen jedoch nicht zu. Die Analyse einzelner Zellen aus einem Tumor brachte eine oft erstaunliche genetische Vielfalt zu Tage. Der überwiegende Teil der Erbgut-Differenzen betrifft nur einzelne Genbausteine. Bei vielen Krebsarten unterscheiden sich die Tumorzellen eines Erkrankten jedoch auch durch große, strukturelle Chromosomen-Defekte. Diese Verluste, Austausche oder Vervielfältigungen ganzer Chromosomen oder Chromosomenabschnitte sind unter dem Mikroskop sichtbar. Besonders bei Blutkrebserkrankungen sind so genannte Tochterklone mit voneinander abweichenden Chromosomen-Defekten häufig.

„Bei der akuten myeloischen Leukämie (AML) kommen Chromosomen-Defekte häufig vor. Bei vielen Patienten finden wir außerdem verschiedene Tochterklone der Krebszellen. Allerdings war bei der AML nicht bekannt, ob dieses Phänomen für den Verlauf einer Erkrankung eine Rolle spielt“, sagt Professor Dr. Alwin Krämer, der eine klinische Kooperationseinheit des Deutschen Krebsforschungszentrums und des Universitätsklinikums Heidelberg leitet.

Krämer und seine Mitarbeiter untersuchten nun im Rahmen der „Studienallianz Leukämie“ bei über 2600 AML-Patienten die Chromosomenbilder, den so genannten „Karyotyp“, der Krebszellen. Bei etwa der Hälfte der Erkrankungen wiesen die Forscher Chromosomenanomalien nach. Bei rund einem Drittel davon fanden sie verschiedene Tochterklone, die sich anhand ihrer Chromosomendefekte unterschieden.

In den meisten Fällen ließ sich auch das verwandtschaftliche Verhältnis der verschiedenen Klone nachvollziehen: Meist handelte es sich um „Töchter“, die sich durch eine neu hinzugekommene Chromosomenanomalie vom Mutterklon unterschieden. Teilweise hatte sich ein Mutterklon in drei oder mehrere Nachkommenklone aufgesplittet. Jedoch fanden die Forscher auch komplexe Krankheitsbilder, die sich aus einer großen Vielzahl von Tochterklonen mit unterschiedlichen Chromosomenanomalien zusammensetzten.

Die statistische Auswertung ergab, dass das Vorhandensein von Tochterklonen mit einem ungünstigen Verlauf der Erkrankung in Zusammenhang steht. Besonders bei Patienten, die aufgrund bestimmter genetischer Merkmale als Hochrisikogruppe eingestuft werden, ist das Vorhandensein von Tochterklonen ein zusätzlicher, unabhängiger Risikofaktor für einen ungünstigen Verlauf der Erkrankung. Der Nachweis verschiedenartiger Tochterklone ist daher für den Arzt ein eigenständiger prognostischer Faktor, insbesondere bei AML-Patienten, die jünger als 60 Jahre sind.

„Tochterklone auszubilden ist ein Überlebensvorteil für Tumoren“, erklärt Alwin Krämer. „Sie erweitern ihr genetisches Spektrum und steigern damit die Möglichkeit einer Resistenz gegen Chemotherapien.“ Für diese Theorie spricht auch die Beobachtung, dass Patienten mit besonders vielen verschiedenen Tochterklonen eine noch schlechtere Prognose haben als Patienten mit nur wenigen Tochterklonen.

„Gerade diese Patienten profitieren aber von einer Stammzell-Transplantation“, erklärt Krämer. Dieser Behandlung, die auf immunologischen Mechanismen beruht, scheinen Leukämiezellen nicht so leicht durch genetische Diversifizierung entgehen zu können wie einer Chemotherapie.

Die aktuelle große Analyse der AML-Karyotypen bestätigt erstmalig den Zusammenhang zwischen dem Vorliegen von Tochterklonen, also der genetischen Vielfalt des Tumors, und der Prognose einer Krebserkrankung. „Wir gehen aber davon aus, dass dieser Zusammenhang auch bei anderen Krebsarten eine Rolle spielt, bei denen heterogene Karyotypen beschrieben sind.“

Tilmann Bochtler, Friedrich Stölzel, Christoph E. Heilig, Christina Kunz, Brigitte Mohr, Anna Jauch, Johannes W.G. Janssen, Michael Kramer, Axel Benner, Martin Bornhäuser, Anthony D. Ho, Gerhard Ehninger, Markus Schaich and Alwin Krämer for the Study Alliance Leukemia (SAL): Clonal heterogeneity as detected by metaphase karyotyping is an indicator of poor prognosis in acute myeloid leukemia. Journal of Clinical Oncology 2013, DOI: 10.1200/JCO.2013.50.7921

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 2.500 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2854
F: +49 6221 42 2968
presse@dkfz.de
Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
D-69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
presse@dkfz.de

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://www.dkfz.de/pressemitteilungen

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Neuer Ansatz: Nierenschädigungen therapieren, bevor Symptome auftreten
20.09.2017 | Universitätsklinikum Regensburg (UKR)

nachricht Neuer Ansatz zur Therapie der diabetischen Nephropathie
19.09.2017 | Universitätsklinikum Magdeburg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie