Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hirnsimulation: Die Vision braucht mehr Zeit

20.06.2007
Jülicher Forscher nehmen Hirnmodell ins Visier

Der Traum von einem künstlichen Gehirn könnte schon bald Wirklichkeit sein, wenn man dem Medienecho der letzten Zeit Glauben schenken will. In einem Übersichtsartikel des Fachmagazins „Brain Structure und Function“ haben zwei Neurowissenschaftler des Forschungszentrums Jülich zusammengefasst, welche Wissenslücken dazu aber noch gefüllt werden müssen. Ihr Fazit: Bis zu einer brauchbaren Hirnsimulation ist es noch ein weiter Weg.

Der große Traum der Neurowissenschaften ist eine Simulation des menschlichen Gehirns im Computer, wie es derzeit etwa das Schweizer ‚Blue Gene’ Projekt des ‚Brain and Mind Institutes’ in Lausanne versucht. Erst wenn Wissenschaftler das Gehirn nachbauen können, werden sie wirklich verstehen, wie es funktioniert – so die Hoffnung, die hinter der Vision steckt. Der Weg dorthin führt über kleinere Hirnmodelle wie das der Ratte mit seinen 100 Millionen Nervenzellen und eine Billion Signalübertragungsstellen, den Synapsen.

Ganz so schnell lässt sich das Großhirn des Nagers jedoch nicht simulieren, sind sich Joachim Lübke und Dirk Feldmeyer, Neurowissenschaftler am Forschungszentrums Jülich, einig. “Es gibt einfach noch zu viele offene Fragen”, sagen die beiden Leiter der Arbeitsgruppe Zelluläre Neurobiologie am Institut für Neurowissenschaften und Biophysik. Die Jülicher Forscher haben gerade im Fachmagazin „Brain Structure and Function“ in einem Übersichtsartikel den Kenntnisstand über den Aufbau und die Funktionen der kortikalen Kolumne, der kleinsten funktionellen Einheit der Großhirnrinde zusammengefasst.

... mehr zu:
»Hirnmodell »Nervenzellen

Die kortikale Kolume steht auch im Mittelpunkt der Simulation des Gehirns. Das „Original“ besteht aus zehntausend und mehr Nervenzellen, die alle auf den gleichen Sinnesreiz reagieren. Diese Hirnmodule, aus denen sich große Bereiche des Neokortex zusammensetzen, werden seit fünfzig Jahren untersucht. „Wir brauchen jedoch noch viel mehr Informationen über die kortikale Kolumne, um ein aussagekräftiges Hirnmodell erstellen zu können“, lautet das Fazit der beiden Jülicher Neurowissenschaftler.

Gegen den schnellen Erfolg der Simulation eines Rattengehirns sprechen derzeit noch viele Aspekte. Hauptkritikpunkt der beiden Jülicher Forscher: Es soll das Großhirn einer ausgewachsenen Ratte simuliert werden, tatsächlich sind viele Daten aber in Experimenten an jungen Rattengehirnen erhoben worden. Vorteil:

Sie lassen sich leichter untersuchen und die Präparate leben länger als die Rattengehirne ausgewachsener Tiere. Das Problem: „Die kortikale Kolumne verändert sich im Laufe der Zeit strukturell, funktionell und selbst in molekularen Komponenten“, sagt Joachim Lübke. So ändert sich beispielsweise die Effizienz der synaptischen Übertragung zwischen Nervenzellen.

Das Signal, das an die nächste Nervenzelle weitergeleitet werden soll, wird schwächer. Je älter die Nervenzellen werden, desto weniger effizient werden sie. Gleichzeitig verändert sich die Dynamik der Synapse. „Solche altersabhängigen Veränderungen müssten eigentlich in ein Hirnmodell mit einbezogen werden“, sagt Dirk Feldmeyer. „Zudem werden die Nervenzellen nicht am lebenden Tier sondern in vitro untersucht“, sagt Feldmeyer. Viele Untersuchungen werden am frisch präparierten Hirnschnitt durchgeführt, weil die Neurowissenschaftler so leichter die synaptischen Zellübergänge erreichen. Ob solche in vitro-Messungen die tatsächliche Situation im lebenden Rattengehirn (in vivo) widerspiegeln, wird unter Neurowissenschaftlern derzeit noch kontrovers diskutiert. „Wie diese in vitro-Daten mit denen in vivo übereinstimmen, muss man erst noch herausfinden“, sagt Feldmeyer und beschreibt damit zugleich eines der Projekte, das die Jülicher Forscher derzeit angehen.

„Auch durchläuft das Gehirn viele verschiedene Zustände, die durch Neuromodulatoren auf- und abgeregelt werden“, sagt Feldmeyer. Ob man wach ist oder schläft, erregt, aufmerksam oder unkonzentriert, immer versetzen so genannte Neuromodulatoren wie beispielsweise die Botenstoffe Acetylcholin, Adrenalin, Dopamin und Histamin das Gehirn in einen anderen Grundzustand. Manche Forscher behandeln den Kortex jedoch wie ein unveränderliches System.

„Wir wissen selbst, dass Modelle die Wirklichkeit nicht zu hundert Prozent widerspiegeln können“, sagen die beiden Hirnforscher. Auch sie folgen dieser Vision mit ihrer Forschung. Aber ein Modell zu entwickeln, das brauche einfach Zeit.

„In einem Jahr – wie zuletzt in der Publikumspresse angekündigt – wird es sicher kein brauchbares Modell des Ratengroßhirns geben“, sind sich beide sicher.

Kontakt:

Prof. Dirk Feldmeyer, E-mail: d.feldmeyer@fz-juelich.de, Tel.: 02461-61 5226
Prof. Dr. Joachim Lübke, E-mail: j.luebke@fz-juelich.de, Tel.: 02461 61 2288
Annette Stettien, Wissenschaftsjournalistin, Unternehmenskommunikation, Forschungszentrum Jülich Tel. 02461 61-2388/-8031, Fax 02461 61-4666,

E-Mail: a.stettien@fz-juelich.de, b.schunk@fz-juelich.de

Dr. Angela Lindner,
Leiterin Unternehmenskommunikation,
Forschungszentrum Jülich,
52425 Jülich
Tel. 02461 61-4661,
Fax 02461 61-4666,
E-Mail: a.lindner@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Berichte zu: Hirnmodell Nervenzellen

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs
06.12.2016 | Wilhelm Sander-Stiftung

nachricht Tempo-Daten für das „Navi“ im Kopf
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik