Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Preliminary study finds stem cells in blood restore damaged heart muscle

21.10.2003


Proves adult stem cells from blood can repair heart



Based on promising animal data, researchers at The University of Texas M. D. Anderson Cancer Center say that cells taken from a patient’s own blood may one day be able to repair heart tissue that has been damaged.

While other researchers have shown that stem cells derived from bone marrow and umbilical cord blood can regenerate cardiac tissue, this study demonstrates that adult stem cells circulating in blood can also repair a heart.


In the study, published online in the current issue of the journal Circulation, the scientists found that human blood stem cells -- "master" cells that produce other types of body cells as needed -- regenerated heart muscle cells as well as artery tissue in mice whose hearts were injured.

"This takes us a big step ahead," says the lead author, Edward T. H. Yeh, M.D., professor and chair of M. D. Anderson’s Department of Cardiology. "Taking stem cells from blood is a lot easier, and a lot less painful, than taking it from bone marrow.

"For patients, it would be as simple as donating blood," he says. "We would then isolate these potent cells and give them back to the patient where the damage has occurred."

While the researchers are cardiologists and cancer specialists, and are interested in treating heart failure that occurs in up to 10 percent of patients who use chemotherapy, they say such cell-based regeneration therapy could benefit patients who have had a heart attack or other injuries that have led to heart failure. "Such a therapy cannot bring back dead heart muscle, but it can help restore weakened hearts, no matter what the cause of the damage was," says Yeh.

The research also contributes more evidence to the idea that stem cells circulating in the blood can transform themselves into different organ systems as needed to repair injury -- a notion dubbed "stem cell plasticity" that is both revolutionary and controversial. The theory, pioneered by M. D. Anderson researchers Martin Körbling, M.D., and Zeev Estrov, M.D., upsets longstanding beliefs that different kinds of tissue have their own supply of stem cells to repair damage. If correct, however, stem cell plasticity could be used to repair, or even replace tissues and organs injured by cancer, say Körbling and Estrov, who are co-authors on this study.

To conduct the study, the researchers collected a supply of human stem cells from what is generally regarded as debris from the process of banking human red blood. (After blood is collected from volunteers, it is separated into white and red blood cells, and the white blood cells are usually thrown away.) The scientists collected white blood cells and then searched for those cells that express a protein (CD34+) that is known to be associated with stem cells. They then isolated cells with the CD34+ marker from the white cells.

To test whether peripheral blood stem cells could regenerate tissue, the research team used two groups of mice that were engineered not to have an immune system, so that they would not reject human cells. One group of mice was given an artificially induced heart attack, and then immediately treated with an injection of the human stem cells. The other mice, with healthy hearts, also received the stem cell therapy.

The researchers found that in mice with an injured heart, new cardiac muscle cells (myocytes) had developed at the edge of damaged tissue, and several layers of new blood vessel tissue (endothelial and smooth muscle cells) had also grown. Little evidence of such repair was found in the mice with healthy hearts, says Yeh.

"We’ve shown that CD34+-associated cells can actually transform into three different cells used by the heart, and that tissue damage is critical to this process," he says.

Several sources for regenerative stem cells have been suggested, such as bone marrow, cord blood and embryonic cells, but this study "demonstrates that adult blood stem cells may be an alternative to these other sources of cells for myocardial regeneration," says Yeh. "And blood is a readily available source of stem cells that does not require significant manipulation."

Yeh notes that no stem cell protocol has been approved in the United States to date, and that most human trials using stem cells (those derived from bone marrow) have taken place in Europe and South America. Still, Yeh says he hopes his research can advance in the near future.


The study was funded by M. D. Anderson.

Co-authors include Estrov, a professor of the Division of Bioimmunotherapy; Körbling, a professor in the Bone Marrow Transplantation Program; and Sui Zhang, M.D., Ph.D., all of M. D. Anderson. Also collaborating on the study were Henry D. Wu, M.D, and James T. Willerson, M.D., of The University of Texas Health Science Center at Houston. Yeh carries a joint appointment at The Health Science Center and the Texas Heart Institute.

Written by Renee Twombly

Laura Sussman | EurekAlert!

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Titandioxid-Nanopartikel können Darmentzündungen verstärken
19.07.2017 | Universität Zürich

nachricht Künftige Therapie gegen Frühgeburten?
19.07.2017 | Universitätsspital Bern

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten