Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Ansatzpunkt im Kampf gegen Schlaganfall und Herzinfarkt

07.10.2003


Ruhende Thrombozyten. / Foto: Universität Heidelberg.


Aktivierte Thrombozyten. / Foto: Universität Heidelberg.


Heidelberger Wissenschaftler identifizieren Protein, das Blutplättchen aktiviert und dadurch Thrombosen hervorruft / Veröffentlichung in "Nature Medicine"

... mehr zu:
»Herzinfarkt »Protein »Schlaganfall

Wissenschaftler am Pharmakologischen Institut der Universität Heidelberg unter der Leitung von Prof. Dr. Stefan Offermanns haben ein Protein namens G13 identifiziert, dessen Funktion entscheidend für die Blutstillung sowie die Ausbildung von Thrombosen ist. Sie haben ihre Ergebnisse in der jüngsten Ausgabe von "Nature Medicine" (11/2003) veröffentlicht, die vorab online im Internet publiziert ist. Das entdeckte Protein könnte ein wichtiger Ansatzpunkt für die Entwicklung effektiver Medikamente gegen Herzinfarkt und Schlaganfall sein.

Das Protein G13 ist ein wichtiger "Signalvermittler" bei der Ausbildung von arteriellen Gefäßverschlüssen, die durch die Zusammenklumpung von Blutplättchen (Thrombozyten) verursacht werden. Thrombozyten zirkulieren in großer Zahl im menschlichen Blutkreislauf (ein Tropfen Blut enthält mehrere Millionen Blutplättchen). Kommt es zu Verletzungen der Gefäßwand, so sind Blutplättchen als schnelle "Reparatur-Einsatztruppe" sofort zur Stelle und sorgen für eine rasche Blutstillung: An der verletzten Gefäßwand werden kleine Pfropfen (Thrombozyten-Aggregate) gebildet, die den Defekt verschließen.


Hemmung der Blutplättchen ist ein vielversprechender Therapieansatz

Thrombozyten haben jedoch auch ein gefährliches Potential, wenn sie im intakten Blutgefäß aktiviert werden. Sie verlegen das Gefäß und blockieren die Blutversorgung wichtiger Organe, zum Beispiel bei Herzinfarkt oder Schlaganfall. Dabei lagern sich die Blutplättchen häufig in atherosklerotisch veränderten Gefäßen ab. Die Deaktivierung der Blutplättchen ist deshalb einer der vielversprechendsten Therapieansätze. Dies hat auch der Erfolg von Acetylsalicylsäure (Aspirin) gezeigt, die in niedrigen Dosen die Thrombozytenfunktion hemmt und mittlerweile Standardtherapie für die Vorbeugung von Herzinfarkt und Schlaganfall ist.

Das Protein G13 sitzt an der Innenseite der Zellwand und gibt die Signale bestimmter Eiweißmoleküle (Rezeptoren) auf der Thrombozyten-Oberfläche an das Zellinnere weiter. Dadurch werden Prozesse in den Zellen in Gang gesetzt, die für die Bildung stabiler Thrombozyten-Aggregate von entscheidender Bedeutung sind. Die Heidelberger Wissenschaftler stellten zusammen mit Kollegen aus Würzburg und München fest, dass Mäuse, denen das Protein selektiv in ihren Blutplättchen fehlt, resistent gegen das Auftreten von arteriellen Thromben sind. Ansonsten sind diese Tiere jedoch gesund und leiden nicht unter spontanen Blutungen.

"Das Protein G13 sowie die von ihm regulierten intrazellulären Prozesse sind neue interessante potentielle Zielstrukturen für Arzneimittel, die für die Prävention und Behandlung von Erkrankungen wie dem Herzinfarkt oder dem Schlaganfall eingesetzt werden können", erklärt Prof. Dr. Stefan Offermanns. Denn nach wie vor sind Behandlung und Vorbeugung dieser Erkrankungen noch unzureichend und der Bedarf an schlagkräftigen neuen Substanzen groß.

Ansprechpartner:

Prof. Dr. Stefan Offermanns
Geschäftsführender Direktor
Pharmakologisches Institutes
Universität Heidelberg
Fax: 06221-548549
Email: stefan.offermanns@urz.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.med.uni-heidelberg.de/aktuelles

Weitere Berichte zu: Herzinfarkt Protein Schlaganfall

Weitere Nachrichten aus der Kategorie Medizin Gesundheit:

nachricht Lymphdrüsenkrebs programmiert Immunzellen zur Förderung des eigenen Wachstums um
22.02.2018 | Wilhelm Sander-Stiftung

nachricht Forscher entdecken neuen Signalweg zur Herzmuskelverdickung
22.02.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Medizin Gesundheit >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics