Einmalig in Deutschland: Protonentherapie bei Augentumoren

Augentumoren bedrohen nicht nur das Sehvermögen, sondern sie können auch – wie im Falle des häufigsten Tumores des Augeninneren, dem Aderhautmelanom – das Leben des Patienten bedrohen. Seit 1998 setzt das Team um Prof. Dr. Michael H. Foerster von der Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin (ehemals Universitätsklinikum Benjamin Franklin der Freien Universität Berlin, UKBF), in Kooperation mit dem Hahn-Meitner-Institut die so genannte Protonentherapie ein. Einmalig in Deutschland erlaubt sie eine maßgeschneiderte Therapie durch beschleunigte Teilchen und führt in über neunzig Prozent der Fälle zu einer Zerstörung des Augentumors.

Das maligne Melanom der Aderhaut ist der häufigste primäre bösartige Tumor im Auge. In Deutschland werden jährlich rund 500 bis 600 Neuerkrankungen diagnostiziert. Mit Protonenstrahlen, die aus einem Teilchenbeschleuniger der physikalischen Forschung gewonnen werden, behandeln Augenärzte der Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin unter Leitung von Michael H. Foerster Patienten aus ganz Deutschland und dem Ausland. Diese Behandlungsmethode mit Protonenstrahlen ist in Deutschland einzigartig. Sie erfolgt in enger Zusammenarbeit mit Physikern der Beschleunigeranlage des Hahn-Meitner-Institutes (HMI) unter der Leitung von Dr. Heinrich Homeyer, sowie der Strahlentherapeuten der Charité, Campus Benjamin Franklin unter der Leitung von Prof. Dr. Wolfgang Hinkelbein.

Rund zwei Drittel aller Krebspatienten werden im Verlauf ihrer Krankheit mit Strahlung behandelt. Bislang setzten Mediziner vor allem Gamma- und Elektronenstrahlen ein, doch gewinnt die Behandlung mit Protonenstrahlen weltweit an Bedeutung. Protonen sind positiv geladene Kerne des Wasserstoffatoms. Die Protonentherapie bietet besondere Vorteile bei Tumoren in der Nähe von empfindlichem, gesundem Gewebe, da sie eine hohe Präzision gewährleistet. Das ist für Augentumoren von großer Bedeutung, da der Tumor und die empfindlichen Strukturen des Auges, wie Sehnerv und Netzhaut, dicht nebeneinander liegen. Hier stellt die Protonentherapie eine wesentliche, in der Regel Auge und Sehvermögen erhaltende Therapieform dar, zumal eine medikamentöse Behandlung (Chemotherapie) bei Augentumoren bis heute nicht möglich ist. Zur Bestrahlung von Tumoren im Augeninneren benötigt man Protonen mit der relativ hohen Energie von rund 70 Millionen Elektronenvolt. Solche maßgeschneiderten Teilchenstrahlen lassen sich nur mit großem apparativen Aufwand herstellen.

Bei den Erkrankungen handelt es sich um Tumoren, die intraokular, also im Augeninnern, wachsen. Am häufigsten sind dabei bösartige Melanome, die im Augapfel in der Aderhaut entstehen. Meist sind Menschen im sechsten Lebensjahrzehnt betroffen. Bei etwa einem Drittel der Fälle kann die Protonentherapie entscheidend helfen. Am besten sind die Resultate bei Tumoren mit einem Durchmesser von bis zu 15 Millimetern, die mehr als drei Millimeter vom Sehnerv oder der Stelle des schärfsten Sehens entfernt sind. Es können jedoch auch größere Tumoren erfolgreich behandelt werden: „Um Nebenwirkungen nach der Protonenbestrahlung zu minimieren, haben wir in unserer Augenklinik ein neues operatives Verfahren entwickelt, mit dem große Tumoren nach der Protonenbestrahlung schonend entfernt werden können“, sagt Michael H. Foerster. „Die ersten Erfahrungen mit dieser Endoresektion sind viel versprechend.“

Wegen der Präzision des Protonenstrahls ist die exakte Positionierung des Patienten von entscheidender Bedeutung. Nach der Diagnose eines Augentumors müssen zunächst dessen Position und Ausdehnung vermessen werden. Dazu werden vom Augenarzt mehrere Markierungsplättchen aus Tantal auf die Lederhaut des erkrankten Auges genäht. Der Arzt legt dann die Form und räumliche Lage des Tumors relativ zu den Tantalplättchen fest. Die Plättchen verursachen in der Regel keinerlei Beschwerden und werden auch nach der Bestrahlung nicht entfernt.

Ein bis zwei Wochen nach dieser ersten Operation beginnt die Behandlung im HMI. In einer ersten Sitzung ohne Protonenbestrahlung werden auf dem Behandlungsstuhl eine Gesichtsmaske und ein Gebissabdruck angefertigt. Die Maske und der „Beißblock“ dienen der Fixierung des Patienten auf dem Behandlungsstuhl, der mit einer Genauigkeit von einem Zehntel Millimeter entlang der drei Raumachsen und um zwei Rotationsachsen positioniert werden kann. Danach wird der Patient in die spätere Behandlungsposition gebracht. Um die Blickrichtung des immer noch beweglichen Auges festzulegen, werden mehrere Röntgenaufnahmen mit verschiedenen Blickrichtungen angefertigt, auf denen die Markierungsclips sichtbar werden. Mit ihnen lassen sich Position und Orientierung des Auges exakt vermessen und später mit der Sollposition aus der Bestrahlungsplanung vergleichen. Damit wird die Blickrichtung des Patienten überprüft.

Danach beginnt die Arbeit der Physiker am HMI. Aus den Positionen der Tantalumclips auf den Röntgenaufnahmen in Verbindung mit weiteren diagnostischen Daten wie Ultraschallaufnahmen, CT- und MRT-Schnitten sowie den Daten des Augenarztes wird ein Computermodell des erkrankten Auges errechnet. Das Modell rekonstruiert die Lage des Tumors und berechnet den optimalen Fixierungswinkel für die Bestrahlung. Bevor in der Werkstatt die Messingblenden für die Bestrahlung hergestellt werden können, wird in einer zweiten Sitzung mit dem Patienten einige Tage nach dem ersten Termin kontrolliert, ob der Bestrahlungsplan auch praktisch umsetzbar ist. Dazu wird der Patient auf dem Behandlungsstuhl fixiert und wie für die Bestrahlung positioniert. Dabei werden dem Patienten auch erstmals „Lidhalter“ eingesetzt, die ein Blinzeln während der Bestrahlung verhindern und die Augenlider aus dem Protonenstrahl heraushalten. „Der Behandlungsstuhl wird digital gesteuert und kann bis auf 0,1 Millimeter exakt ausgerichtet werden“, erzählt der Physiker Dr. Heinz Kluge, der am HMI für die Protonentherapie zuständig ist.

In der folgenden Woche erscheint der Patient täglich zur Bestrahlung im Behandlungsraum des Zyklotrons. Der Patient nimmt auf dem Behandlungsstuhl Platz und seine Haltung wird mit der Sollposition verglichen. Ein vergrößertes Fernsehbild der Pupille des zu bestrahlenden Auges wird auf das Kontrollpult übertragen und die Sollposition des Auges auf dem Bildschirm markiert, um bei einer möglichen Bewegung des Auges den Strahl sofort zu unterbrechen. Das Strahlrohr, aus dem der Protonenstrahl austritt, ist der letzte Strang der Strecke, die der Teilchenstrahl bei seiner Beschleunigung durchläuft. Mit dem Behandlungsstuhl wird der Patient dicht vor die Austrittsöffnung des Strahlrohres gefahren. Die eigentliche fraktionierte Bestrahlung mit einer Dosis von 15 Gray dauert rund 30 Sekunden, während die Vorbereitung zwischen zehn und zwanzig Minuten beansprucht. „Für den Patienten ist die Behandlung nicht belastend“, erklärt Foerster. Eine Narkose ist deshalb nicht erforderlich. Zur Behandlung sind in der Regel vier Sitzungen nötig, die innerhalb einer Woche durchgeführt werden. Mit dieser Behandlungstechnik sind in Berlin in den letzten fünf Jahren bereits mehr als 360 Patienten behandelt worden. Die Wahrscheinlichkeit, den Tumor im Auge zu zerstören, liegt bei 94 bis 96 Prozent. Die Wissenschaftler bemühen sich, die Erfolgsrate weiter zu optimieren. Aus diesem Grund wird im Rahmen eines Projektes mit dem Deutschen Krebsforschungszentrums in Heidelberg an einer weiteren Verbesserung der Präzision des Bestrahlungsverfahrens gearbeitet.

Weitere Informationen erteilt:

Prof. Dr. Michael H. Foerster
Augenklinik und Poliklinik der Charité
Universitätsmedizin Berlin
Campus Benjamin Franklin
Tel.: 030 – 8445-2331, -2332
E-Mail: foerster@medizin.fu-berlin.de

Media Contact

Ilka Seer idw

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer