Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schaltungen und Sensoren aus dem Drucker

30.04.2014

Drucker mausern sich zu Multitalenten. Sogar Sensoren und elektronische Bauteile können inzwischen auf 2D- und 3D-Oberflächen gedruckt werden. Eine neue, robotergestützte Fertigungsstraße automatisiert den Prozess.

Drucker sind heute in jedem Büro unersetzlich. Aber auch in der Mikroelektronik, Mikrosystemtechnik und Sensorik spielen digitale Drucktechnologien eine wichtige Rolle: Am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Bremen stellen Forscher mit unterschiedlichen Druckverfahren elektronische Bauteile und Sensoren her.


Zylinder – mit Sensorstrukturen funktionalisiert.

© Fraunhofer IFAM

Winzige Widerstände, Transistoren, Leiterbahnen und Kondensatoren werden zunächst am Bildschirm entworfen und anschließend direkt auf zwei- und dreidimensionale Oberflächen, beispielsweise auf Platinen, aufgebracht. Anstelle von Druckfarben verwenden die Wissenschaftler »funktionelle Tinten« – elektronische Materialien in flüssiger und pastöser Form. Das Potenzial für gedruckte Elektronik ist groß – es reicht vom Digitalthermometer mit elektronischen Schaltkreisen über Solarzellen von der Rolle bis hin zu intelligenten Verpackungen mit eingebauten Sensoren.

Um flache und dreidimensionale Bauteile mit gedruckter Elektronik automatisiert herstellen zu können, haben die Wissenschaftler am IFAM eine robotergestützte Fertigungsstraße in Betrieb genommen, die gleich mehrere Druckverfahren kombiniert: Sieb-, Inkjet-, Dispens- und Aerosol-Jet-Druck sind modular in der Produktionseinheit integriert. Die Fertigungsstraße mit zentraler Robotereinheit, Bauteilzuführung, Druck-
systemen und Wärmebehandlungsöfen versetzt die Forscher in die Lage, Oberflächen seriennah zu funktionalisieren.

Dank der unterschiedlichen Technologien lassen sich sowohl flächige als auch dicke und feine Strukturen auf die Substrate drucken. Mit dem Aerosol-Jet-Verfahren etwa können die Forscher feinste Strukturen mit Breiten von nur 10 Mikrometern kontaktfrei auf das Bauteil aufbringen. Hierbei wird die leitfähige Tinte pneumatisch zerstäubt und das entstehende Aerosol über einen Schlauch zum Druckkopf geführt. Dieser fokussiert den Strahl auf die Substratoberfläche, die uneben sein kann – sogar gekrümmte Oberflächen lassen sich auf diese Weise bedrucken. Auch unterschiedliche Schichtdicken und mehrlagige Strukturen sind möglich. »Eine Platine kann beispielsweise nicht nur mit Schaltkreisen, sondern auch gleich mit einer Schicht, die sie vor Korrosion schützt, ausgestattet werden«, sagt Dr. Volker Zöllmer, Abteilungsleiter am IFAM..

Doch wie funktioniert ein »Druckvorgang« im Detail? Nachdem per Steuerungssoftware je nach gewünschtem Endprodukt die Reihenfolge und Art der Drucker festgelegt wurde, greift der Roboter den Probenträger, also beispielsweise eine Platine, und befördert diese zur ersten Druckstation. Um 200 Mikrometer breite Leiterbahnen in die Oberfläche zu integrieren, wird zunächst der Dispenser, ein Dosiersystem mit Piezoantrieb, angesteuert. Über ein Ventil lässt sich das Volumen und die Tropfengröße der viskosen Medien – etwa eines elektrisch leitfähigen Klebstoffs – exakt dosieren. Soll die Leiterbahn zu einem Sensor führen, wird die Platine im nächsten Schritt an den Aerosoldrucker weitergeleitet. Dieses Spezialgerät für feinste Strukturen druckt den Sensor auf. Je nach Anwendung werden weitere Drucker angesteuert. Abschließend erfolgt eine thermische Nachbehandlung im Ofen, um die gewünschten Eigenschaften zu erhalten. Die bedruckbaren Substrate können die Größe eines DIN-A3-Blatts haben, die Höhe der Bauteile kann mehrere Zentimeter betragen.

Oberflächen maßgeschneidert funktionalisieren

Bei der Wahl der zu be- und verdruckenden Materialien sind den Experten vom IFAM kaum Grenzen gesetzt: Als verdruckbare Tinten kommen Metalle, Keramiken, elektrisch leitfähige Polymere, aber auch Biomaterialien wie Proteine und Enzyme in Frage. Diese Medien applizieren die Wissenschaftler je nach Anforderung auf Glas, Textilien, Metalle, keramische Platten und viele andere Werkstoffe. »Mit der neuen Fertigungsstraße können wir verschiedenste Materialien kombinieren und Produkte nach Kundenwunsch fertigen. Im Prinzip erhalten Bauteile völlig neue Funktionen – so kann eine Glasscheibe mit integriertem Temperatursensor Wärme messen. Gedruckte Sensorik eignet sich auch zur Bauteilüberwachung, um frühzeitig Risse und Schädigungen zu erkennen. Zum Beispiel können aerosolgedruckte Dehnungsmessstreifen auf einer Aluminiumoberfläche rechtzeitig auf Materialermüdungen in Karosseriebauteilen hinweisen«, erläutert Zöllmer.

Mit der robotergestützten Fertigungsstraße verkürzen sich auch die  Entwicklungzeiten. Um Bauteile mit Sensorstrukturen auszurüsten, werden die Sensoren häufig nachträglich in die Bauteile integriert – ein zeitaufwändiger Prozess. Die IFAM-Forscher benötigen – je nach Anwendung – nur wenige Sekunden bis Minuten, um ein Bauteil zu bedrucken. Von den kurzen Entwicklungszeiten könnten viele Branchen profitieren, wie die Automobil- und Luftfahrtbranche, aber auch die Mikrosystemtechnik. »Wir können die Industrie bei der Produktentwicklung unterstützen, Klein- und Nullserien lassen sich mit der Fertigungsstraße herstellen«, sagt Zöllmer. Dabei hat der Kunde auch die Möglichkeit, die modulare Fertigungsstraße mit eigenen Prozessen zu erweitern.

Dr. Volker Zöllmer | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/Mai/schaltungen_und_sensoren_aus_dem_drucker.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum
07.12.2016 | Technische Universität Graz

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie