Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Poröses Silizium verbessert Lithium-Ionen-Akkus

21.11.2008
Neuartiges Anodenmaterial verspricht höhere Kapazität

Wissenschaftler an der südkoreanischen Hanyang University haben ein Anodenmaterial entwickelt, das kapazitätsstärkere Lithium-Ionen-Akkus in Aussicht stellt.

Eine neue Batterie-Generation mit deutlich höherer Laufzeit könnte verwirklicht werden, indem in der negativen Elektrode das klassische Material Graphit durch das neuartige Material ersetzt wird. Dabei handelt es sich um dreidimensionale, hochporöse Siliziumstrukturen, die das Team um Jaephil Cho in der Fachzeitschrift Angewandte Chemie vorgestellt hat. "Die präsentierten Ergebnisse sehen durchaus vielversprechend aus", meint Martin Schmuck, Wissenschaftlicher Mitarbeiter am Institut für Chemische Technologie von Materialien der TU Graz, im Gespräch mit pressetext.

Beim Aufladen eines Lithium-Ionen-Akkus wandern Lithium-Ionen in die Anode und werden in deren Material gespeichert. Normalerweise handelt es sich dabei um Graphit, das aber eine begrenzte Speicherkapazität hat. Silizium verspricht eine höhere Kapazität, kämpft aber damit, dass es sich beim Aufladen ausdehnt und beim Entladen durch die Abgabe der Lithium-Ionen wieder schrumpft. Dadurch werden Silizumschichten normalerweise nach einigen Ladezyklen pulversiert und unbrauchbar. Die Koreaner lösen dieses Problem durch ein neuartiges Herstellungsverfahren. Sie nutzen Siliziumdioxid-Nanopartikel und ein Silizium-basiertes Gel als Ausgangsbasis für den Fertigungsprozess. Am Ende entstehen kohlestoffüberzogene Siliziumkriställchen in einer dreidimensionalen, hochporösen Struktur. Die daraus bestehenden Anoden zeigen eine hohe Ladekapazität und erlauben den Forschern zufolge schnelle Lade- und Entladevorgänge.

Die Entwicklung der Koreaner ist das Ergebnis eine von vielen Forschungsbemühungen, die an Siliziumanoden arbeiten. "Wir verfolgen hier in Graz einen ähnlichen Ansatz", sagt Schmuck. Einen ganz anderen Weg ist dagegen ein Team der US-Universität Stanford gegangen, das im Dezember 2007 eine Verarbeitung des Siliziums in Nanodraht-Form vorgestellt hat (pressetext berichtete: http://pte.at/pte.mc?pte=071221014). Wirklich optimale Akkus lassen sich aber allein durch bessere Anoden nicht verwirklichen, warnt Schmuck. "Es muss auch an der Kathode gearbeitet werden", betont der Wissenschaftler gegenüber pressetext. Hier werde international Grundlagenforschung betrieben, die langfristig Kathodenmaterialien mit eine drei bis vier Mal höheren Kapazität in Aussicht stellt. Außerdem wird daran gearbeitet, die genutzte Zellenspannung zu steigern, da auch das leistungsfähigere Akkus verspricht. "Daran zeigt auch die Industrie Interesse", so Schmuck. Ferner beeinflusst auch das im Akkumulator genutzte Elektrolyt, wie viel Energie letztendlich gespeichert werden kann.

Thomas Pichler | pressetext.austria
Weitere Informationen:
http://www.hanyang.ac.kr/english
http://www.tugraz.at

Weitere Berichte zu: Akku Anoden Anodenmaterial Aufladen Graphit Lithium-Ionen Lithium-Ionen-Akku Silizium

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Clevere Folien voller Quantenpunkte
27.03.2017 | Technische Universität Chemnitz

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie