Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Niemandsland der Eiskristalle

23.05.2013
Simulationen erlauben erstmals Einblicke in die Kristallisation winziger Wassertropfen

Wasser, das zu Eis gefriert, ist Physik im Alltag, aber auch Wissenschaftler lernen darüber immer wieder Neues. So lässt sich erst jetzt auch im Nanometer-Bereich untersuchen, wann dieser Kristallisationsprozess beginnt und wie schnell er bei verschiedenen Temperaturen und Wassertropfen unterschiedlicher Größe verläuft.


Vom Nanotropfen zum Eiskristall: Wie schnell ein Tropfen von wenigen Nanometern Durchmesser zu Eis gefriert, hängt von seiner Größe und der Umgebungstemperatur ab.
© Davide Donadio

Denn Forscher des Max-Planck-Instituts für Polymerforschung in Mainz haben gemeinsam mit Kollegen von der George Washington University in Washington D.C. und der University of California in Davis ein Modell entwickelt, mit dem sich die Eisbildung in winzigen Wassertropfen simulieren lässt.

Dabei stellten sie fest, dass die Kristallisationsrate bei sehr kleinen Tropfen stark von deren Radius abhängt. Die Erkenntnisse könnten dazu beitragen, Klimamodelle zu verbessern, weil die Kristallisation von Wasser bei der Wolkenbildung in den oberen Atmosphärenschichten eine entscheidende Rolle spielt.

Für ihre Untersuchungen haben die Wissenschaftler winzige Wassertropfen mit einem Radius zwischen 2,4 und 6,1 Nanometern betrachtet. „Sie enthalten ungefähr 2000 beziehungsweise 32000 Wassermoleküle“, erklärt der Physiker Davide Donadio, der am Max-Planck-Institut für Polymerforschung die Forschungsgruppe Theory of Nanostrucures and Transport leitet. „Unsere Simulationen basieren auf einem klassischen Modell, das die Thermodynamik des Wassers gut wiedergibt.“ Dieses Modell berücksichtigt insbesondere eine Eigenschaft, die charakteristisch für das Verhalten von Wasser ist: seine Dichteanomalie. Im Gegensatz zu anderen Flüssigkeiten erreicht Wasser seine maximale Dichte nicht am Gefrierpunkt, sondern schon bei vier Grad Celsius. Aus diesem Grund frieren Seen und Flüsse selbst bei Temperaturen weit unter null Grad nie vollständig zu.

Die Berechnungen hat Tianshu Li auf einem kleinen Computer-Cluster an der George Washington University vorgenommen. Mit ihrer Hilfe konnten die Wissenschaftler die Bewegungen jedes einzelnen Moleküls bei Temperaturen zwischen minus 68 und minus 33 Grad Celsius nachverfolgen und genau beobachten, wann die Kristallisation des Wassers begann. „Dabei stellten wir fest, dass die Eisbildung bei Tropfen mit einem Radius von unter fünf Nanometern stark von ihrer Größe abhängt“, sagt Tianshu Li. „Je kleiner die Tropfen wurden, desto geringer war bei einer festen Umgebungstemperatur die Kristallisationsrate“. Sobald der Radius über fünf Nanometern lag, hing die Eisbildung hingegen kaum mehr von der Tropfengröße ab.

In Nanotropfen sinkt die Kristallisationsrate mit ihrem Radius

Für dieses Verhalten sind vor allem Oberflächeneffekte verantwortlich: Wegen der Krümmung der Wassertropfen herrscht in ihnen ein höherer Druck als in der Umgebung – ein Phänomen, das den Namen Laplace-Druck trägt und mit sinkendem Radius immer wichtiger wird. Ursache dafür ist die Oberflächenspannung des Wassers: Kräfte zwischen den Molekülen sorgen dafür, dass sich die Oberfläche ähnlich wie eine Folie verhält und kleine Lasten tragen kann. Das erlaubt es beispielsweise Insekten, über Bäche oder Seen zu spazieren.

In den winzigen Wassertropen führt der Laplace-Druck dazu, dass sich die Eisbildung verlangsamt. „Durch den höheren Druck in ihrem Inneren sinkt die Kristallisationsrate“, so Donadio. „Grund dafür ist die Anomalie des Wassers: Weil Eis eine geringere Dichte hat, führt eine Druckerhöhung immer zu einem sinkenden Gefrierpunkt.“ Genau das zeigte auch die Simulation: Je kleiner der Tropfenradius wurde, desto höher stieg der Laplace-Druck und desto kleiner war die Kristallisationsrate.

„Es gibt eine große Debatte über das Verhalten von Wasser in der von uns untersuchten Temperaturregion“, erklärt Tianshu Li. „Mit Hilfe unserer Resultate können andere Forscher jetzt die Ergebnisse von Experimenten besser interpretieren.“ Solche Versuche sind extrem schwierig, weil die Eisbildung in den winzigen Tropfen äußerst schnell abläuft und sich darum nur unter großen Schwierigkeiten beobachten lässt – aus diesem Grund sprechen Wissenschaftler auch von einem Niemandsland für Experimente. Die Ergebnisse der Simulation sind aber auch für die Atmosphärenforschung von großer Bedeutung: Wassertropfen in den Wolken streuen das Sonnenlicht und bestimmen dadurch, wie viel Strahlung auf der Erde ankommt. Die Resultate von Donadio und seinen Kollegen Tianshu Li von der George Washington University und Giulia Galli von der University of California verhelfen Atmosphärenforschern jetzt zu einem besseren Verständnis der Eisbildung in Stratosphärenwolken. Zudem können sie ihre Klimamodelle verbessern, weil sich die Streuung des Sonnenlichts an Wolken besser berechnen lässt.
Ansprechpartner
Dr. Davide Donadio
Max-Planck-Institut für Polymerforschung, Mainz
Telefon: +49 6131 379-333
E-Mail: donadio@­mpip-mainz.mpg.de
Originalpublikation
Tianshu Li, Davide Donadio und Giulia Galli
Ice nucleation at the nanoscale probes no man’s land of water
Nature Geoscience, 21. Mai 2013; doi: 10.1038/ncomms2918

Dr. Davide Donadio | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7261642/nano_tropfen_eis_kristall

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen
23.04.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Ein Wimpernschlag vom Isolator zum Metall
17.04.2018 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics