Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Niemandsland der Eiskristalle

23.05.2013
Simulationen erlauben erstmals Einblicke in die Kristallisation winziger Wassertropfen

Wasser, das zu Eis gefriert, ist Physik im Alltag, aber auch Wissenschaftler lernen darüber immer wieder Neues. So lässt sich erst jetzt auch im Nanometer-Bereich untersuchen, wann dieser Kristallisationsprozess beginnt und wie schnell er bei verschiedenen Temperaturen und Wassertropfen unterschiedlicher Größe verläuft.


Vom Nanotropfen zum Eiskristall: Wie schnell ein Tropfen von wenigen Nanometern Durchmesser zu Eis gefriert, hängt von seiner Größe und der Umgebungstemperatur ab.
© Davide Donadio

Denn Forscher des Max-Planck-Instituts für Polymerforschung in Mainz haben gemeinsam mit Kollegen von der George Washington University in Washington D.C. und der University of California in Davis ein Modell entwickelt, mit dem sich die Eisbildung in winzigen Wassertropfen simulieren lässt.

Dabei stellten sie fest, dass die Kristallisationsrate bei sehr kleinen Tropfen stark von deren Radius abhängt. Die Erkenntnisse könnten dazu beitragen, Klimamodelle zu verbessern, weil die Kristallisation von Wasser bei der Wolkenbildung in den oberen Atmosphärenschichten eine entscheidende Rolle spielt.

Für ihre Untersuchungen haben die Wissenschaftler winzige Wassertropfen mit einem Radius zwischen 2,4 und 6,1 Nanometern betrachtet. „Sie enthalten ungefähr 2000 beziehungsweise 32000 Wassermoleküle“, erklärt der Physiker Davide Donadio, der am Max-Planck-Institut für Polymerforschung die Forschungsgruppe Theory of Nanostrucures and Transport leitet. „Unsere Simulationen basieren auf einem klassischen Modell, das die Thermodynamik des Wassers gut wiedergibt.“ Dieses Modell berücksichtigt insbesondere eine Eigenschaft, die charakteristisch für das Verhalten von Wasser ist: seine Dichteanomalie. Im Gegensatz zu anderen Flüssigkeiten erreicht Wasser seine maximale Dichte nicht am Gefrierpunkt, sondern schon bei vier Grad Celsius. Aus diesem Grund frieren Seen und Flüsse selbst bei Temperaturen weit unter null Grad nie vollständig zu.

Die Berechnungen hat Tianshu Li auf einem kleinen Computer-Cluster an der George Washington University vorgenommen. Mit ihrer Hilfe konnten die Wissenschaftler die Bewegungen jedes einzelnen Moleküls bei Temperaturen zwischen minus 68 und minus 33 Grad Celsius nachverfolgen und genau beobachten, wann die Kristallisation des Wassers begann. „Dabei stellten wir fest, dass die Eisbildung bei Tropfen mit einem Radius von unter fünf Nanometern stark von ihrer Größe abhängt“, sagt Tianshu Li. „Je kleiner die Tropfen wurden, desto geringer war bei einer festen Umgebungstemperatur die Kristallisationsrate“. Sobald der Radius über fünf Nanometern lag, hing die Eisbildung hingegen kaum mehr von der Tropfengröße ab.

In Nanotropfen sinkt die Kristallisationsrate mit ihrem Radius

Für dieses Verhalten sind vor allem Oberflächeneffekte verantwortlich: Wegen der Krümmung der Wassertropfen herrscht in ihnen ein höherer Druck als in der Umgebung – ein Phänomen, das den Namen Laplace-Druck trägt und mit sinkendem Radius immer wichtiger wird. Ursache dafür ist die Oberflächenspannung des Wassers: Kräfte zwischen den Molekülen sorgen dafür, dass sich die Oberfläche ähnlich wie eine Folie verhält und kleine Lasten tragen kann. Das erlaubt es beispielsweise Insekten, über Bäche oder Seen zu spazieren.

In den winzigen Wassertropen führt der Laplace-Druck dazu, dass sich die Eisbildung verlangsamt. „Durch den höheren Druck in ihrem Inneren sinkt die Kristallisationsrate“, so Donadio. „Grund dafür ist die Anomalie des Wassers: Weil Eis eine geringere Dichte hat, führt eine Druckerhöhung immer zu einem sinkenden Gefrierpunkt.“ Genau das zeigte auch die Simulation: Je kleiner der Tropfenradius wurde, desto höher stieg der Laplace-Druck und desto kleiner war die Kristallisationsrate.

„Es gibt eine große Debatte über das Verhalten von Wasser in der von uns untersuchten Temperaturregion“, erklärt Tianshu Li. „Mit Hilfe unserer Resultate können andere Forscher jetzt die Ergebnisse von Experimenten besser interpretieren.“ Solche Versuche sind extrem schwierig, weil die Eisbildung in den winzigen Tropfen äußerst schnell abläuft und sich darum nur unter großen Schwierigkeiten beobachten lässt – aus diesem Grund sprechen Wissenschaftler auch von einem Niemandsland für Experimente. Die Ergebnisse der Simulation sind aber auch für die Atmosphärenforschung von großer Bedeutung: Wassertropfen in den Wolken streuen das Sonnenlicht und bestimmen dadurch, wie viel Strahlung auf der Erde ankommt. Die Resultate von Donadio und seinen Kollegen Tianshu Li von der George Washington University und Giulia Galli von der University of California verhelfen Atmosphärenforschern jetzt zu einem besseren Verständnis der Eisbildung in Stratosphärenwolken. Zudem können sie ihre Klimamodelle verbessern, weil sich die Streuung des Sonnenlichts an Wolken besser berechnen lässt.
Ansprechpartner
Dr. Davide Donadio
Max-Planck-Institut für Polymerforschung, Mainz
Telefon: +49 6131 379-333
E-Mail: donadio@­mpip-mainz.mpg.de
Originalpublikation
Tianshu Li, Davide Donadio und Giulia Galli
Ice nucleation at the nanoscale probes no man’s land of water
Nature Geoscience, 21. Mai 2013; doi: 10.1038/ncomms2918

Dr. Davide Donadio | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7261642/nano_tropfen_eis_kristall

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Fraunhofer IFAM erweitert den Forschungsbereich »Beschichtungen für Bewuchs- und Korrosionsschutz«
11.01.2017 | Fraunhofer IFAM

nachricht Schrauben mit Köpfchen
10.01.2017 | Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltweit erste Solarstraße in Frankreich eingeweiht

16.01.2017 | Energie und Elektrotechnik

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie