Neue Funktion im Inneren eines Fullerenkäfigs

Fullerene sind käfigförmige Moleküle aus Kohlenstoff, die vor 25 Jahren entdeckt wurden. Das häufigste Fulleren – C60 – besteht aus 60 Kohlenstoffatomen, die einen Käfig von nur 0,71 Nanometern Durchmesser bilden.

Ist dieser Hohlraum mit anderen Atomen, Ionen oder Molekülen gefüllt, spricht man von endohedralen Fullerenen. In den letzten Jahren sind unter den endohedralen Fullerenen die Nitridclusterfullerene M3N@C2n wegen ihrer großen Stabilität und der Vielfalt an Clustern im Käfig auf großes Interesse gestoßen.

Forscher aus dem IFW Dresden und der Universität Hefei konnten nun zeigen, dass für den Fall eines Übergangsmetalls wie Titan im Nitridcluster TiM2N die Spindichte an eben diesem Metall(ion) lokalisiert ist. Wird nun der Redoxzustand des gesamten Fullerenemoleküls (z. B. elektrochemisch), so ändert sich der Redoxzustand des Titans. Das ist das erste Beispiel eines endohedralen Fullerens, bei dem die Redoxreaktion des Fullerens ausschließlich über das eingeschlossene Metall abläuft.

In den meisten Fällen ist der Fullerenkäfig selbst an der Redoxreaktion beteiligt. Im vorliegenden Fall kann nun der elektronische Zustand der endohedralen Spezies im Fullerene exakt eingestellt werden. Da der endohedrale Cluster zudem noch im Fullerenkäfig rotiert, entsteht eine stark und schnell veränderliche Spindichteverteilung im TiSc2N@C80.

Dieser Effekt ist von den Forschern als „Spinfluss“ bezeichnet worden, der ein Ausdruck für die zeitliche Änderung der Spinpopulationen ist und der sich mit molekulardynamischen Simulationen in einem 'Spinfluss-Schwingungsspektrum' abbilden lässt. Mit dieser Methode lässt sich eindeutig zeigen, welche internen Schwingungen im Molekül mit dem Spinfluss gekoppelt sind, was nicht nur für endohedrale Metallofullerene sondern für alle Molekülarten mit dieser 'Spinfluss-Schwingungsspektroskopie' möglich ist.

Die Bedeutung der hier vorgestellten Ergebnisse ist im britischen Nanotechnology Journal gewürdigt worden.

Online: http://nanotechweb.org/cws/article/tech/43535

Kontakt:
Dr. Alexey Popov
a.popov@ifw-dresden.de
Tel. 0351-4659658
Prof. Dr. Lothar Dunsch
l.dunsch@ifw-dresden.de
Tel. 0351-4659660

Media Contact

Dr. Carola Langer idw

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer