Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanodrähte für die (Opto-)Elektronik der Zukunft

17.06.2010
Am Anfang stand eine Machbarkeitsstudie zur Herstellung farbig fluoreszierender Dünnschichten für optische Sicherheitsanwendungen. Daraus wurde ein EU-Projekt zur Entwicklung neuartiger Gassensoren. Inzwischen ist es Empa-Forschern und -Forscherinnen gelungen, komplexe organische Nanodrähte zu synthetisieren und leitend miteinander zu verbinden, ein erster Schritt zum Bau künftiger elektronischer und optoelektronischer Bauteile.

Organische Halbleiter sind viel versprechende Kandidaten für die Herstellung billiger, grossflächiger und flexibler optischer und mikro- bis nanoelektonischer Bauteile wie Transistoren, Dioden, und Sensoren. Vorausgesetzt es gelingt, die Komponenten elektrisch leitend miteinander zu verbinden, sie also in Schaltkreise einzubinden. Empa-Forscher und -Forscherinnen haben ein neues Verfahren entwickelt, mit dem sich einfache Netzwerke aus organischen Nanodrähten herstellen lassen.

Der Ursprung: das EU-Projekt «PHODYE»

Nachdem der spanische Physiker Angel Barranco nach einem dreijährigen Forschungsaufenthalt an der Empa nach Valencia zurückgekehrt war, initiierte er das EU-Projekt «PHODYE» – unter anderem mit seinen ehemaligen Empa-KollegInnen. Ziel ist, hoch sensible optische Gassensoren zu entwickeln, beispielsweise um Strassenverkehrsemissionen zu überwachen oder um Laborpersonal sowie Bergwerkarbeiter frühzeitig vor Giftstoffen zu warnen. Die Sensoren basieren auf fluoreszierenden Dünnschichten, die beim Kontakt mit bestimmten Gasmolekülen Farbe und Fluoreszenz ändern.

«Uns schwebte zunächst eine Art elektronischer Schlüssel für Sicherheitsanwendungen vor, der nur auf bestimmte optische Bedingungen reagiert», erklärt der Empa-Physiker Pierangelo Gröning. Hierfür waren transparente, stark fluoreszierende Dünnschichten gefragt. Deswegen entwickelten Gröning und Barranco ein Plasmaabscheidungsverfahren, um fluoreszierende Farbstoffmoleküle wie Metallo-Porphyrine, Perylene und Phthalocyanine unversehrt und in hoher Konzentration in SiO2- oder TiO2-Schichten einzulagern.

Schnell zeigte sich: Lagern sich bestimmte Gasmoleküle an die Farbstoffteilchen in den Dünnschichten an, fluoreszieren diese Teilchen in einer anderen Wellenlänge, das heisst in einer anderen Farbe, und die Dünnschicht ändert dadurch ihre Farbe. Kommen verschiedene Farbstoffe zum Einsatz, lassen sich unterschiedliche, für den Menschen gefährliche Gase bereits in kleinsten Mengen detektieren.

Überraschend vielseitig einsetzbar

Für viele Sensoranwendungen ist allerdings auch ein möglichst schnelles Ansprechverhalten wichtig – was sich mit kompakten Plasmafarbschichten kaum erfüllen lässt. Anders mit möglichst offenporigen Schichten – etwa in Form eines «Teppichflors» im Nanomassstab –, von denen sich die WissenschaftlerInnen zudem weitere Vorteile erhofften: Durch sie erhöht sich die Adsorptionsfläche für die nachzuweisenden Gasmoleküle, und die Diffusionswege verkürzen sich; dadurch sollte der Sensor deutlich schneller reagieren. Die Physikerin Ana Borras entwickelte daraufhin ein neues Vakuumdepositionsverfahren zur Synthese organischer Nanodrähte.

Inzwischen können die Empa-Forschenden sogar – je nach Ausgangsmolekül und Versuchsbedingungen – Nanodrähte mit den unterschiedlichsten Eigenschaften herstellen. Nanodrähte aus Metallo-Phthalocyanin-Molekülen weisen etwa einen Durchmesser von lediglich 10 bis 50 Nanometer und eine Länge von bis zu 100 Mikrometer auf. Das Besondere und Unerwartete am neuen Verfahren: Bei genauer Kontrolle von Substrattemperatur, Molekülfluss und Substratvorbehandlung zeigen die organischen Nanodrähte über ihre gesamte Länge einen bislang unerreichten perfekten monokristallinen Aufbau.

Schon nach den ersten elektronenmikroskopischen Untersuchungen war Gröning klar, dass das neue Verfahren nicht nur Nanodrähte für die beabsichtigten Gassensoren liefert, sondern auch komplexe «Nanodraht-Schaltkreise» für (opto-)elektronische Anwendungen wie Solarzellen, Transistoren und Dioden ermöglicht. Denn verschiedenartige Nanodrähte können miteinander beliebig zu Netzwerken mit den unterschiedlichsten Eigenschaften kombiniert werden, wie Gröning & Co. unter anderem in der Fachzeitschrift «Advanced Materials» berichteten.

Der Trick dabei: Die auf der Oberfläche gewachsenen Nanodrähte werden in einem zweiten Schritt durch ein Sputter-Beschichtungsverfahren mit Silber-Nanopartikeln «dekoriert»; ein Target – in diesem Fall ein Silberfestkörper – wird mit energiereichen Ionen beschossen, wodurch sich Silberatome herauslösen, in die Gasphase übergehen und auf den Nanodrähten ablagern. Und darauf kann das Empa-Team in einem letzten Schritt weitere Nanodrähte wachsen lassen – die mit dem Ursprungsdraht via Silberpartikel erst noch elektrisch leitend verbunden sind: die Grundstruktur eines verzweigten Schaltkreises im Nanomassstab.

Der erste Schritt von der Mikro- zur Nanoelektronik

Erste Leitfähigkeitsmessungen in einem speziellen 4-Spitzen-Rastertunnelmikroskop im Ultrahochvakuum haben selbst die kühnsten Erwartungen übertroffen: Das Material besitzt eine aussergewöhnlich hohe Qualität. «Das eröffnet uns die Möglichkeit, bald auch organisches Material als Halbleiter herzustellen», ist Gröning zuversichtlich. «Und dies erst noch mit einem einfachen und günstigen Verfahren.» Inzwischen gelingt es den ForscherInnen, immer komplexere Nano-Drahtstrukturen zu synthetisieren und diese mit viel Geschick und Fingerspitzengefühl zu verbinden.

Zum Beispiel Nanodrähte, die abschnittweise aus unterschiedlichen Ausgangsmolekülen bestehen. Verwendet man dabei Moleküle, die entweder nur positive oder nur negative Ladungen transportieren können, entsteht eine Diode, die den Strom nur in eine Richtung «durchlässt». Gut möglich, spekuliert Gröning, dass daraus eines Tages Bauteile für die Nanoelektronik und Nanophotonik entstehen.

Literaturhinweis
A. Borras, O. Gröning, J. Köble, P. Gröning: Organic Nanowires: Connecting Organic Nanowires, Advanced Materials, vol. 21, issue 47, pp. 4816 – 4819; DOI: 10.1002/adma.200901724
Weitere Informationen
Dr. Pierangelo Gröning, nanotech@surfaces, Tel. +41 44 823 40 04 / +41 33 228 52 15, pierangelo.groening@empa.ch

Sabine Voser | idw
Weitere Informationen:
http://www.empa.ch

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Mikroplastik in Meeren: Hochschule Niederrhein forscht an biologisch abbaubarer Sport-Kleidung
18.09.2017 | Hochschule Niederrhein - University of Applied Sciences

nachricht Flexibler Leichtbau für individualisierte Produkte durch 3D-Druck und Faserverbundtechnologie
13.09.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie