Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Höhere Materialeffizienz durch verbesserte Konstruktion mithilfe rechnergestützter Simulation

03.12.2013
Technologie-Institut TIME bietet Unterstützung für kleine und mittelständische Unternehmen

Die Materialkosten stellen im produzierenden Gewerbe den größten Kostenblock dar. Das Technologie-Institut für Metall & Engineering (TIME) in Wissen, eine der Forschungs- und Entwicklungseinrichtungen im Innnovationscluster Metall-Keramik-Kunststoff (IMKK), unterstützt kleine und mittelständische Unternehmen bei der Optimierung von Bauteilen mittels strukturmechanischer Simulation.




Bild 1 & 2: Mittels Modalanalyse ermittelte Verformungen durch die Eigenfrequenzen einer Riemenscheibe unter Belastung. Bildquelle: Technologie-Institut für Metall & Engineering (TIME)

Neben Metallen können auch weitere Werkstoffe wie Kunststoffe oder Keramiken mithilfe der Finite-Elemente-Methode (FEM) analysiert werden, um die Materialeffizienz zu steigern.

„Mit rund 45 Prozent machen die Materialkosten den größten Anteil an den Gesamtproduktionskosten der metallverarbeitenden Unternehmen aus“, erklärt Dr. Ralf Polzin, Geschäftsführer des TIME. „Die Optimierung von Bauteilen bietet folglich enorme Einsparpotenziale für produzierende Unternehmen.“ Eine erhöhte Materialeffizienz ermöglicht es, mit geringerem beziehungsweise gleichem Materialeinsatz die gleiche beziehungsweise größere Menge an Produkten herzustellen. Dies wirkt sich nicht nur auf den Geschäftserfolg aus, sondern schont zusätzlich Umwelt und Ressourcen.

Das Technologie-Institut TIME unterstützt kleine und mittelständische Unternehmen (KMU) im nördlichen Rheinland-Pfalz, Bauteile oder Baugruppen durch die Simulation mithilfe der Software ANSYS zu optimieren. Untersucht werden nicht nur Konstruktionen aus Metall, wie Stahl und Aluminium, sondern auch aus Kunststoff oder Keramik. Unter mechanischen Lasten und/oder Temperaturlasten führt das TIME Verformungsanalysen, Festigkeitsnachweise oder Bauteiloptimierungen durch. Die Zielsetzung ist dabei stets die maximale Ausnutzung des vorhandenen Materials beziehungsweise die Einsparung von Material. Verformungs- und Festigkeitsanalysen einzelner Bauteile können mithilfe der Methode der Finiten Elemente (FEM) erstellt werden.

Verformungsanalyse: Gute Steifigkeit mit weniger Material
Mit der Verformungsanalyse prüft das TIME beispielsweise bei Maschinen- oder Untergestellen die Toleranzgrenze der Verformung von Bauteilen. Eine Verformungsanalyse wird ausschließlich dann durchgeführt, wenn bekannt ist, dass die innerhalb der Konstruktion auftretenden Spannungen unkritisch sind. Durch Betrachtung der Verformungen können konstruktive Merkmale von Anlagen oder Bauteilen, beispielsweise durch Änderung der Wanddicke oder geometrischen Verteilung des Materials, so modifiziert werden, dass mit möglichst wenig Material eine sehr gute Steifigkeit herbeigeführt werden kann.
Festigkeitsnachweis: Optimale Dimensionierung mittels Simulation
Weniger Materialeinsatz bedeutet im Regelfall weniger Bauteilkosten. Lange Zeit wurden Bauteile überschlägig und folglich mit notwendigen Sicherheitsaufschlägen konstruiert. Der steigende Kostendruck und zunehmende Wettbewerb zwingen Unternehmen zu einem möglichst effizienten Umgang mit dem vorhandenen Material. Die Dimensionierung von Bauteilen muss zwar den Sicherheitsanforderungen entsprechen, eine Überdimensionierung sollte jedoch vermieden werden. Mithilfe der FEM-Berechnung werden Bauteile in puncto sichere Konstruktionen auf ihre maximale Beanspruchung hin untersucht. Der Vorteil: Die kostenintensive Herstellung versagender oder überdimensionierter Prototypen entfällt im Normalfall.

Zur Überprüfung der Randbedingungen, wie Lagerungen und Lasten, wird das geometrische Modell der Konstruktion zunächst grob vernetzt, also in kleine Elemente aufgeteilt, die mittels gemeinsamer Knoten verbunden sind. Mit dieser groben, aber schnell durchlaufenden Berechnung können die kritischen Stellen mit den maximalen Spannungen des Bauteils ermittelt werden. Diese werden so lange mit feineren Elementen vernetzt, bis die ermittelten Ergebnisse hinreichend genau sind. Zeigt sich das konstruierte Bauteil als nicht ausreichend dimensioniert, muss eine Umkonstruktion erfolgen, um eine geringere Beanspruchung zu erzielen. Sind alle konstruktiven Lösungen ausgeschöpft oder soll die bestehende Konstruktion nicht abgeändert werden, besteht zudem die Möglichkeit, ein höherwertiges Material einzusetzen, welches die auftretenden Beanspruchungen ertragen kann.

Optimierung von Bauteilen
Bei der Optimierung von bestehenden Bauteilen oder Anlagen werden zunächst die Randbedingungen sowie der Bauraum festgelegt. Sind keine weiteren Beschränkungen vorhanden, empfiehlt sich eine Topologieoptimierung. Hierbei kann die Software bei vorgegebenem Bauraum und festgelegten Lasteinleitungspunkten sehr einfach die Elemente des vernetzten Bauteils, die am wenigsten zur Steifigkeit beitragen, entfernen. Die Topologieoptimierung bietet sich besonders für Konstruktionen an, die ein niedriges Gewicht erreichen sollen.

Oft existieren jedoch weitere Beschränkungen, zum Beispiel hinsichtlich der Materialauswahl oder der zu verwendenden Komponenten. Gestartet wird dann mit einer Ist-Analyse der vorhandenen Konstruktion. Diese Analyse zeigt die Schwachstellen sowie Bereiche, in welchen das Material nicht ausgenutzt wird. Das Bauteil kann optimiert und Material eingespart werden, indem in Bereichen hoher Beanspruchung das Material verstärkt wird, während es dort geschwächt wird, wo das Material nicht ausgenutzt wird. Iterative Schleifen der FE-Analyse und konstruktiven Anpassung erfolgen so lange, bis das Ergebnis zufriedenstellend ist.

Praxisabgleich ist unerlässlich
FEM-Berechnungen weisen einen sehr hohen Zuverlässigkeitsgrad auf. Um einen sicheren Abgleich mit der Praxis zu ermitteln, sollten zusätzlich zur Simulation stets Bauteilversuche erfolgen, bestenfalls mit Messungen am Bauteil zur Verifikation der Berechnungen. Das TIME ermittelt die Beanspruchung des Werkstoffs zusätzlich mit Dehnungsmessstreifen. Zahlreiche Projektbeispiele des TIME zeigen, dass sich die Analyse lohnt: Durch die Optimierung einer bestehenden Bauteilblechkonstruktion konnten 27 Prozent Material eingespart werden. Die Simulationsunterstützung bei der Neukonstruktion einer bestehenden Anlage realisierte 18 Prozent Materialeinsparung und die Optimierung einer Bauteilgruppe erreichte bei gleicher Baugröße eine 15 Prozent höhere Belastbarkeit.
Technologie-Institut für Metall & Engineering
Das Technologie-Institut für Metall & Engineering (TIME) wurde vom Land Rheinland-Pfalz, dem Landkreis Altenkirchen, der Universität Siegen sowie der Handwerkskammer Koblenz 2009 mit dem Ziel gegründet, kleine und mittelständische Unternehmen der Region bei Forschung und Entwicklung zu unterstützen. Aufgaben des Institutes sind die Forschung zu anwendungsrelevanten Fragestellungen, die Entwicklung neuer, innovativer Prozesse und Produkte für und mit den Unternehmen, die Beratung von Unternehmen sowie die Fort- und Weiterbildung von Fachkräften. Das TIME ist eine der Forschungs- und Entwicklungseinrichtungen im Innovationscluster Metall-Keramik-Kunststoff.

Pressemitteilung als PDF zum Download:
2013.12.03_TIME Materialeffizienz.pdf

Bildmaterial zum Download:
Bildquelle: Technologie-Institut für Metall & Engineering (TIME)

Bild 1 & 2: Mittels Modalanalyse ermittelte Verformungen durch die Eigenfrequenzen einer Riemenscheibe unter Belastung
TIME_Eigenfrequenz_1.jpg
TIME_Eigenfrequenz_2.jpg

Bild 3: Randbedingungen der Strukturanalyse einer Riemenscheibe
TIME_Randbedingungen_3.jpg

Bild 4: Berechnete Spannungen einer Riemenscheibe unter Belastung
TIME_Spannungen_4.jpg

Innovationscluster Metall-Keramik-Kunststoff (IMKK)
Metall, Keramik, Kunststoff, mineralische Baustoffe und Oberflächentechnik sind die Schwerpunktbranchen mit mehr als 250 Betrieben und 25.000 Arbeitsplätzen in den Landkreisen Altenkirchen, Neuwied und Westerwald. Mit der Einrichtung des Innovationsclusters Metall-Keramik-Kunststoff (IMKK) hat das Land Rheinland-Pfalz ein Instrument geschaffen, um regionale Innovationsprozesse zu moderieren und den Unternehmen einen raschen, fundierten und kontinuierlichen Zugriff auf Forschungsergebnisse von Hochschulen und anwendungsorientierten Forschungsinstituten sowie auf neue Produktionsverfahren und High-Tech-Werkstoffe zu ermöglichen. Der Innovationscluster Metall-Keramik-Kunststoff steht für das Ziel der rheinland-pfälzischen Wirtschaftspolitik, Herausforderungen wie die Energiewende, ein nachhaltiges, effizientes Ressourcenmanagement – die Green Economy – und die Gestaltung zukunftsfähiger Arbeitsplätze als Chance zu nutzen und so die internationale Wettbewerbsfähigkeit des Mittelstandes in den sich ständig wandelnden globalisierten Märkten zu stärken.

Diese Veröffentlichung wurde von der Europäischen Union aus dem Europäischen Fonds für regionale Entwicklung und vom Land Rheinland-Pfalz kofinanziert.

Pressekontakt
Gunilla Bischoff . VisCom360 . Carl-Zeiss-Str. 53 . 55129 Mainz .
Tel: (06131) 90622-66 . E-Mail: presse@viscom360.com . www.viscom360.com
Quelle
Innovationscluster Metall-Keramik-Kunststoff c/o TechnologieZentrum Koblenz . Universitätsstraße 3 . 56070 Koblenz

| TechnologieZentrum Koblenz
Weitere Informationen:
http://www.time-rlp.de
http://www.metall-keramik-kunststoff.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Clevere Folien voller Quantenpunkte
27.03.2017 | Technische Universität Chemnitz

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

Zweites Symposium 4SMARTS zeigt Potenziale aktiver, intelligenter und adaptiver Systeme

27.03.2017 | Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fließender Übergang zwischen Design und Simulation

27.03.2017 | HANNOVER MESSE

Industrial Data Space macht neue Geschäftsmodelle möglich

27.03.2017 | HANNOVER MESSE

Neue Sicherheitstechnik ermöglicht Teamarbeit

27.03.2017 | HANNOVER MESSE