Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

High-Speed-Röntgentechnik zeigt Weg zu besseren Katalysatoren

31.01.2014
Forscher beobachten atomare Struktur einer Katalysatoroberfläche unter Reaktionsbedingungen

Mit einer neuen Röntgentechnik hat ein schwedisch-deutsches Forscherteam einem Katalysator live bei der Arbeit zugesehen und die atomare Struktur seiner Oberfläche bestimmt.


Schematische Darstellung der Katalysatoroberfläche mit einer Oxidschicht.
Bild: Johan Gustafson/Universität Lund

Die an DESYs Röntgenlichtquelle PETRA III entwickelt Technik soll die Konstruktion optimierter Materialien wie etwa besserer Katalysatoren auf der atomaren Ebene ermöglichen. Das Team um Hauptautor Dr. Johan Gustafson von der Universität Lund präsentiert seine Arbeit im US-Fachjournal "Science".

Mit der Technik lässt sich die atomare Struktur von Oberflächen deutlich schneller bestimmen als bisher, so dass Live-Aufnahmen von Oberflächenreaktionen wie Katalyse, Korrosion und Wachstumsprozessen mit einer Zeitauflösung von weniger als einer Sekunde möglich werden. "Wir können damit Oberflächenprozesse verfolgen, die sich bislang nicht in Echtzeit beobachten ließen, und die in vielen Bereichen der Materialforschung eine zentrale Rolle spielen", erläutert DESY-Forscher Prof. Andreas Stierle aus dem Team.

Materialforschern fehlt derzeit eine Methode, um die komplette atomare Struktur einer Oberfläche während dynamischer Prozesse in akzeptabler Zeit aufzunehmen. Existierende Verfahren sind entweder zu langsam oder müssen im Hochvakuum stattfinden, was beispielswiese ein Reaktionsgas in der Probenkammer weitgehend ausschließt und damit auch die Live-Beobachtung von Reaktionen der Oberfläche mit Gasen bei annähernd atmosphärischem Druck.

"Unser Ziel war, Oberflächen unter reaktiven, anwendungsnahen Bedingungen live anzuschauen", sagt Stierle. Die Forscher nutzten dazu die hochenergetische Röntgenstrahlung von DESYs Forschungslichtquelle PETRA III. Wenn die Röntgenstrahlen eine feste Oberfläche treffen, werden sie in charakteristischer Weise gebeugt, und das resultierende Beugungsmuster verrät den Wissenschaftlern die atomare Struktur der Oberfläche. Bei konventionellen Röntgenstreuexperimenten mit niedrigerer Energie müssen die Probe und der Detektor gedreht werden, um das gesamte Beugungsmuster sorgfältig Schritt für Schritt abzutasten - eine Prozedur, die oft zehn Stunden oder mehr Messzeit in Anspruch nimmt.

Die hochenergetische Röntgenstrahlung von PETRA III streut dagegen in einen viel kleineren Winkelbereich. Das deutlich kompaktere Beugungsmuster lässt sich mit einem Hochleistungs-Flächendetektor an der High-Energy-Materials-Science-Messstation P07 komplett in einer Aufnahme bestimmen.

"Dieser Ansatz beschleunigt die Datenaufnahme in Kombination mit einem leistungsstarken Flächendetektor um das Zehn- bis Hundertfache", betont Stierle. Auf diese Weise können die Forscher die komplette Oberflächenstruktur in weniger als zehn Minuten aufnehmen oder individuelle Strukturmerkmale mit einer zeitlichen Auflösung von weniger als einer Sekunde beobachten. "Außerdem erlaubt uns dies, unbekannte oder unerwartete Strukturen leichter zu identifizieren", berichtet Stierle.

Für ihre Untersuchungen installierte die Gruppe eine Probenkammer, in der ein Reaktionsgasdruck von bis zu einem Bar herrschen darf, um realistischen Reaktionsbedingungen nahezukommen. Ein Bar entspricht in etwa dem normalen Luftdruck. Dank eines integrierten Massenspektrometers lässt sich parallel die Verteilung der Gase in der Probenkammer live verfolgen.

Zum Test ihres neuen Ansatzes beobachteten die Wissenschaftler einen Palladium-Katalysator live bei der Arbeit, wie er giftiges Kohlenmonoxid (CO) in unbedenkliches Kohlendioxid (CO2) umwandelt - ähnlich wie es der Katalysator im Auto macht. Sie montierten dazu einen zwei Millimeter dicken Palladium-Einkristall mit einem Durchmesser von einem Zentimeter in der Probenkammer und leiteten eine Mischung aus Kohlenmonoxid, Sauerstoff und Argon als Trägergas hinein. Per Röntgenblick konnten sie verfolgen, wie das Palladium in dem Moment als Katalysator aktiv wurde, sobald Sauerstoff (O2) in die Kammer floss. "Wir können zusehen, wie der Katalysator vom nicht reaktiven in den reaktiven Zustand umschaltet", berichtet Stierle, der das NanoLab bei DESY leitet und auch als Professor an der Universität Hamburg lehrt.

Die Forscher hoffen, mit der neuen Methode auch die sogenannte aktive Phase des Katalysators zu identifizieren. Seit Jahrzehnten rätseln Wissenschaftler, ob die Umwandlung etwa von Kohlenmonoxid in Kohlendioxid an der blanken Metalloberfläche, an einer Oxidschicht oder an Oxidinseln auf der Oberfläche stattfindet. "Mit der neuen Technik ergibt sich die Chance, die Reaktionszentren live mit atomarer Auflösung zu identifizieren", betont Stierle.

Mit dem Wissen ließen sich wiederum Katalysatoren optimieren. Katalysatoren sind Stoffe, die eine chemische Reaktion beschleunigen, ohne dabei selbst verbraucht zu werden. Die neue Messmethode hat eine breite Vielzahl von Anwendungen in der Materialforschung. Die Wissenschaftler erwarten völlig neue Einblicke in die Kinetik von Oberflächenprozessen, was die atomare Konstruktion neuer Materialien ermöglicht. "Die Kombination aus der hochbrillanten Röntgenquelle, der Probenumgebung, Instrumentierung und dem Detektor ist weltweit einmalig", betont Stierle.

Die neue Röntgentechnik ist gemeinsam von Forschern der Universität Lund, von DESY, der Technischen Universität Göteborg und der Universität Hamburg im Rahmen des Röntgen-Ångström-Clusters entwickelt worden und wurde vom Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Projekts NanoXcat finanziell unterstützt.

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
“High-Energy Surface X-Ray Diffraction for Fast Surface Structure Determination”; J. Gustafson, M. Shipilin, C. Zhang, A. Stierle, U. Hejral, U. Ruett, O. Gutowski, P.-A. Carlsson, M. Skoglundh, E. Lundgren; Science, 2014; DOI: 10.1126/science.1246834

Dr. Thomas Zoufal | idw
Weitere Informationen:
http://www.desy.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik