Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Frage der Richtung

27.05.2016

Die Deutsche Forschungsgemeinschaft (DFG) bewilligte den Konstanzer Sonderforschungsbereich (SFB) „Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures“. Der SFB vereint führende Forscherinnen und Forscher der Chemie und Physik, um anisotrope (richtungsabhängige) Eigenschaften von Partikeln und der aus ihnen aufgebauten Materialstrukturen zu erforschen.

Viele künstliche Materialien können auf Teilchenebene aus Partikeln aufgebaut werden. Die Eigenschaften dieses Materials – ob es hart oder weich ist, elektrisch leitend oder isolierend, wasserabweisend oder magnetisch – beruhen einerseits auf den Eigenschaften der Partikel selbst, andererseits aber insbesondere auf der Anordnung jener Bausteine. Dieses Phänomen der richtungsabhängigen Eigenschaften wird Anisotropie genannt.


Der Sonderforschungsbereich 1214 erforscht anisotrope (richtungsabhängige) Eigenschaften von Partikeln und der aus ihnen aufgebauten Materialstrukturen.

Universität Konstanz

Wer diese Anordnung kontrollieren kann, kann maßgeschneiderte künstliche Materialien mit völlig neuen Eigenschaften erzeugen. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte am 25. Mai 2016 einen neuen Sonderforschungsbereich (SFB) an der Universität Konstanz, der sich mit genau diesen Fragen der kontrollierten Anordnung von Teilchen beschäftigt. Der Sonderforschungsbereich SFB 1214 „Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures“ vereint führende Forscherinnen und Forscher der Chemie und Physik, um in Pionierarbeit anisotrope (richtungsabhängige) Eigenschaften von Partikeln und der daraus aufgebauten Materialstrukturen zu erforschen.

Der mit insgesamt rund 7,5 Millionen Euro geförderte SFB umfasst 15 Teilprojekte sowie die Einrichtung eines Zentrums für Partikelanalyse und eines Graduiertenkollegs zur Doktorandenausbildung an der Universität Konstanz. Der SFB 1214 wird am 1. Juli 2016 seine Arbeit aufnehmen und ist zunächst für vier Jahre bewilligt.

Die Natur ist das Vorbild für viele künstliche Werkstoffe. In vielen Fällen ist die Natur jedoch bislang unerreicht. Holz und Knochen sind gute Beispiele: Die herausragenden Eigenschaften dieser Stoffe basieren auf Teilchenebene auf einer ebenso präzisen wie komplexen, richtungsabhängigen Anordnung ihrer Partikel. „Eine vergleichbare Organisation künstlich hergestellter Materie geht weit über den aktuellen Stand der Erkenntnis hinaus“, erklärt der Konstanzer Chemiker Prof. Dr. Helmut Cölfen, Sprecher des Sonderforschungsbereichs 1214.

„Unser Sonderforschungsbereich legt nun das Fundament für das Verständnis und die Nutzung der strukturellen und funktionellen Anisotropie, um eine neue Generation an Materialien mit maßgeschneiderten Eigenschaften möglich zu machen“, gibt Cölfen einen Ausblick. Anisotrope Partikel sind für die molekularen Materialwissenschaften besonders interessant, da sie ein aussichtsreiches Spektrum an gegenseitig gerichteten Wechselwirkungen der Teilchen bieten. Dennoch sind anisotrope Materialstrukturen noch immer ein kaum erforschter Pionierbereich der Materialwissenschaften.

Die Ziele des SFB erfordern sowohl eine umfangreiche Expertise in der Synthese, Analytik und Theorie als auch eine Verknüpfung der Forschungsbereiche harter und weicher Materie. „Diese facettenreiche Grundlage ist in einzigartiger Weise in Konstanz gegeben, da hier eine lang bestehende Forschung zur Physik der weichen Materie durch Chemie-Arbeitsgruppen ergänzt wurde“, zeigt Cölfen auf. Der Sonderforschungsbereich ist im Konstanzer Forschungsschwerpunkt der molekularen Nano- und Materialwissenschaften angesiedelt, einem der vier Profilbereiche der Universität Konstanz.

Die 15 Teilprojekte des SFB befassen sich mit der Synthese von anisotropen Partikelstrukturen, mit ihren Wechselwirkungen, mit sogenannten Partikel-Überstrukturen sowie mit der analytischen Methodenentwicklung. Charakteristisch für die einzelnen Projekte ist jeweils eine Kombination von Theorie und Experiment sowie eine Zusammenarbeit von Chemikern und Physikern. Langfristiges Ziel ist unter anderem, Herstellungsprinzipien für partikel-basierte Materialien zu erarbeiten – mit breiten Anwendungsfeldern für eine neue Generation von optisch, elektronisch, magnetisch und mechanisch optimierten Materialien.

Hinweis an die Redaktionen:
Ein Bild kann im Folgenden heruntergeladen werden:
https://depot.uni-konstanz.de/cgi-bin/exchange.pl?g=yhkv3k25wq
Bildunterschrift: Der Sonderforschungsbereich 1214 erforscht anisotrope (richtungsabhängige) Eigenschaften von Partikeln und der aus ihnen aufgebauten Materialstrukturen.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 88-3603
E-Mail: kum@uni-konstanz.de

Weitere Informationen:

http://www.uni.kn

Julia Wandt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen
27.06.2017 | Fraunhofer IFAM

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive