Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Frage der Richtung

27.05.2016

Die Deutsche Forschungsgemeinschaft (DFG) bewilligte den Konstanzer Sonderforschungsbereich (SFB) „Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures“. Der SFB vereint führende Forscherinnen und Forscher der Chemie und Physik, um anisotrope (richtungsabhängige) Eigenschaften von Partikeln und der aus ihnen aufgebauten Materialstrukturen zu erforschen.

Viele künstliche Materialien können auf Teilchenebene aus Partikeln aufgebaut werden. Die Eigenschaften dieses Materials – ob es hart oder weich ist, elektrisch leitend oder isolierend, wasserabweisend oder magnetisch – beruhen einerseits auf den Eigenschaften der Partikel selbst, andererseits aber insbesondere auf der Anordnung jener Bausteine. Dieses Phänomen der richtungsabhängigen Eigenschaften wird Anisotropie genannt.


Der Sonderforschungsbereich 1214 erforscht anisotrope (richtungsabhängige) Eigenschaften von Partikeln und der aus ihnen aufgebauten Materialstrukturen.

Universität Konstanz

Wer diese Anordnung kontrollieren kann, kann maßgeschneiderte künstliche Materialien mit völlig neuen Eigenschaften erzeugen. Die Deutsche Forschungsgemeinschaft (DFG) bewilligte am 25. Mai 2016 einen neuen Sonderforschungsbereich (SFB) an der Universität Konstanz, der sich mit genau diesen Fragen der kontrollierten Anordnung von Teilchen beschäftigt. Der Sonderforschungsbereich SFB 1214 „Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures“ vereint führende Forscherinnen und Forscher der Chemie und Physik, um in Pionierarbeit anisotrope (richtungsabhängige) Eigenschaften von Partikeln und der daraus aufgebauten Materialstrukturen zu erforschen.

Der mit insgesamt rund 7,5 Millionen Euro geförderte SFB umfasst 15 Teilprojekte sowie die Einrichtung eines Zentrums für Partikelanalyse und eines Graduiertenkollegs zur Doktorandenausbildung an der Universität Konstanz. Der SFB 1214 wird am 1. Juli 2016 seine Arbeit aufnehmen und ist zunächst für vier Jahre bewilligt.

Die Natur ist das Vorbild für viele künstliche Werkstoffe. In vielen Fällen ist die Natur jedoch bislang unerreicht. Holz und Knochen sind gute Beispiele: Die herausragenden Eigenschaften dieser Stoffe basieren auf Teilchenebene auf einer ebenso präzisen wie komplexen, richtungsabhängigen Anordnung ihrer Partikel. „Eine vergleichbare Organisation künstlich hergestellter Materie geht weit über den aktuellen Stand der Erkenntnis hinaus“, erklärt der Konstanzer Chemiker Prof. Dr. Helmut Cölfen, Sprecher des Sonderforschungsbereichs 1214.

„Unser Sonderforschungsbereich legt nun das Fundament für das Verständnis und die Nutzung der strukturellen und funktionellen Anisotropie, um eine neue Generation an Materialien mit maßgeschneiderten Eigenschaften möglich zu machen“, gibt Cölfen einen Ausblick. Anisotrope Partikel sind für die molekularen Materialwissenschaften besonders interessant, da sie ein aussichtsreiches Spektrum an gegenseitig gerichteten Wechselwirkungen der Teilchen bieten. Dennoch sind anisotrope Materialstrukturen noch immer ein kaum erforschter Pionierbereich der Materialwissenschaften.

Die Ziele des SFB erfordern sowohl eine umfangreiche Expertise in der Synthese, Analytik und Theorie als auch eine Verknüpfung der Forschungsbereiche harter und weicher Materie. „Diese facettenreiche Grundlage ist in einzigartiger Weise in Konstanz gegeben, da hier eine lang bestehende Forschung zur Physik der weichen Materie durch Chemie-Arbeitsgruppen ergänzt wurde“, zeigt Cölfen auf. Der Sonderforschungsbereich ist im Konstanzer Forschungsschwerpunkt der molekularen Nano- und Materialwissenschaften angesiedelt, einem der vier Profilbereiche der Universität Konstanz.

Die 15 Teilprojekte des SFB befassen sich mit der Synthese von anisotropen Partikelstrukturen, mit ihren Wechselwirkungen, mit sogenannten Partikel-Überstrukturen sowie mit der analytischen Methodenentwicklung. Charakteristisch für die einzelnen Projekte ist jeweils eine Kombination von Theorie und Experiment sowie eine Zusammenarbeit von Chemikern und Physikern. Langfristiges Ziel ist unter anderem, Herstellungsprinzipien für partikel-basierte Materialien zu erarbeiten – mit breiten Anwendungsfeldern für eine neue Generation von optisch, elektronisch, magnetisch und mechanisch optimierten Materialien.

Hinweis an die Redaktionen:
Ein Bild kann im Folgenden heruntergeladen werden:
https://depot.uni-konstanz.de/cgi-bin/exchange.pl?g=yhkv3k25wq
Bildunterschrift: Der Sonderforschungsbereich 1214 erforscht anisotrope (richtungsabhängige) Eigenschaften von Partikeln und der aus ihnen aufgebauten Materialstrukturen.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: 07531 88-3603
E-Mail: kum@uni-konstanz.de

Weitere Informationen:

http://www.uni.kn

Julia Wandt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise